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Abstract—The behavior of a differentially private system is
governed by a parameter epsilon which sets a balance between
protecting the privacy of individuals and returning accurate
results. While a system owner may use a number of heuristics
to select epsilon, existing techniques may be unresponsive to the
needs of the users who’s data is at risk. A promising alternative
is to allow users to express their preferences for epsilon. In a
system we call epsilon voting, users report the parameter values
they want to a chooser mechanism, which aggregates them into a
single value. We apply techniques from mechanism design to ask
whether such a chooser mechanism can itself be truthful, private,
anonymous, and also responsive to users. Without imposing
restrictions on user preferences, the only feasible mechanisms
belong to a class we call randomized dictatorships with phantoms.
This is a restrictive class in which at most one user has any effect
on the chosen epsilon. On the other hand, when users exhibit
single-peaked preferences, a broader class of mechanisms - ones
that generalize the median and other order statistics - becomes
possible.

I. INTRODUCTION

When designing computer systems that handle personal
information, special techniques are required to safeguard the
privacy of vulnerable individuals. In recent years, differen-
tial privacy has emerged as the gold standard for privacy-
protecting algorithms. Differential privacy is not a single
technique, but rather a mathematical standard that quantifies
the level of privacy protection [1]. In recent years, numerous
protocols have been developed that meet this definition [2],
[3].

Unfortunately, there is a cost to incorporating differential
privacy into a computer system. Typically, the guarantee is
achieved by combining computations with a precise amount
of noise or randomness. As a consequence, the accuracy of
a system tends to degrade as privacy protection increases.
This trade-off is tunable by a parameter ε, which takes values
between 0 and ∞. Conceptually, ε represents the maximum
amount of information that an adversary can learn about an
individual by observing the output.

The choice of ε matters. Although a company might ad-
vertise a system that is differentially private, if ε is set too
high, the privacy guarantee is diluted and sensitive information
is likely to be exposed. If ε is set too low, accuracy may
degrade to the point that a system is not usable. Choosing
an appropriate ε is therefore a critical step in deploying a
differentially private system. Unfortunately, the definition of

differential privacy offers little insight into how this should be
done. Within the research community, there have been diverse
proposals for choosing ε with no consensus, such as calibrating
the choice of ε with threshold values of statistical estimators
[4], examining adversarial attack models and potential queries
of interest [5], and even building an economic model to
compute the set of feasible ε in a world where individuals can
be compensated to offset the risk incurred from participating
in a study [6]. One simple idea that has not received much
attention is to ask the people who’s information is at risk how
much privacy they want. No major deployment we are aware
of has taken this tactic.

There are several reasons we may want to incorporate
user preferences when choosing ε. First, company executives
and data scientists may not understand the privacy risks that
users face. This is particularly concerning to vulnerable and
underrepresented subpopulations. Whether based on political
viewpoint, religious conviction, or sexual orientation, minority
groups may face disproportionate impacts in the case of a
privacy breach. Complicating matters, many companies pos-
sess sensitive data on a global scale. A privacy decision made
in a Silicon Valley board room may increase the risk to gay
men living in Nigeria. Differential privacy has the potential to
protect such groups, but only if ε is chosen with their concerns
in mind.

A second reason to incorporate user preferences when
choosing ε is to allow individuals to participate in the gov-
ernance of systems that affect their lives. Numerous authors
have argued that citizens should be allowed to make informed
decisions about the the collection and use of their personal
data [7]. Incorporating user preferences in the choice of ε
achieves this by encoding these societal concerns about the
use of personal information into the value of ε itself. Such
inclusions of societal preferences, paired with the rigorous
safeguards of differential privacy, may even encourage users to
contribute information to public databases and other scientific
endeavours.

Lastly, incorporating user preferences for ε can be a smart
business strategy. In the modern economy, companies can
differentiate themselves from their competitors by giving users
input into what is currently a closed process. Such a tactic
may serve as a signal to users that their concerns are taken
seriously, while simultaneously protecting them from potential



harms that can arise from analysis of their information.
This study envisions a system in which users submit their

personal preferences for the privacy parameter. That is, each
user messages the system with the value that they would most
want ε to be set to. It is the job of a chooser mechanism to
aggregate these preferences in some way and output a final
choice of ε that is used to protect user data. We will refer to
such a system as ε voting. Voting may be restricted to only
include the consumers using a system, or some votes may be
reserved for a company or governing authority to give them
more influence over the outcome.

It is important to stress that we’re using the word voting in
a general (game-theoretic) sense, not just to refer to majority
voting. The chooser mechanism we envision could implement
any map from incoming votes to its selected ε, and it need not
be deterministic. In fact, we will soon provide an argument for
why it is important to incorporate randomness into the chooser
mechanism.

There are several important properties that we may want
a chooser mechanism to have. We present them here in an
intuitive form, reserving mathematical definitions for later
sections. First, we want the mechanism to be truthful, meaning
that users are not incentivized to misrepresent their prefer-
ences in hopes of getting a more preferred outcome. Truthful
reporting ensures that we gain an accurate view of what users
actually want. There is however a second, more important,
reason to insist on truthful reporting. A classic result known
as the revelation principle tells us that any outcome that can
be achieved by a mechanism in general can also be achieved
by a truthful mechanism. Because of this, we can restrict our
analysis to truthful mechanisms without reducing the range of
achievable outcomes, while also simplifying the analysis.

Second, the chooser mechanism must itself must keep
individual votes private. To motivate this property, consider the
example of an individual that is worried about an adversary
learning her immigration status, which is listed in a database.
An undocumented migrant might vote for a low ε to gain
stronger privacy protection. As a result, across the population,
votes will tend to correlate with immigration status. If an
adversary is able to infer that an individual cast a vote for
a small ε, they may further conclude that the individual
is undocumented, circumventing the privacy guarantee that
applies to the database. Because of this, it is vital for the
chooser to be a privacy-preserving mechanism.

Third, we require that the chooser mechanism satisfy the
game-theoretic notion of anonymity, which requires that the
mechanism does not treat votes differently based on the
identity of the voter. Suppose a voter Alice reports εA to
the mechanism, while a voter Bob reports εB to the mech-
anism. Anonymity ensures that the behavior of the chooser
mechanism does not change if Alice were to instead vote
for εB and Bob were to vote for εA. Intuitively, anonymous
mechanisms are not allowed to treat some voters as more
important than others. While the term anonymity invokes
numerous perceptions in the privacy community, we will use
it in this narrow game-theoretic sense.

Finally, we would like our chooser mechanisms to be
responsive to the votes of individuals. A number of classic
impossibility results suggest that this is difficult to achieve. For
example, the Gibbard-Satterthwaite Theorem tells us that if a
chooser is deterministic and truthful, and there are more than
two possible values of ε, it must be a dictatorship, meaning
there is one individual who determines the outcome [8], [9].
However, such impossibility results hold for deterministic
mechanisms, and can indeed be avoided by utilizing random
mechanisms [10], [11]. Since differential privacy requires
randomness, it may be possible to find private chooser mech-
anisms that are are not dictatorships.

This study therefore centers around a single research ques-
tion:

What social outcomes can be achieved through an
ε voting mechanism that is truthful, private, and
anonymous?

One contribution of our work is the introduction of truthful,
anonymous, private mechanisms that can be used to aggregate
user preferences for ε. We present such mechanisms for two
settings. First, we consider the case that users have arbitrary
preferences over ε. Next, we consider what happens when
preferences are single-peaked. This is a property that is
commonly studied in mechanism design and may realistically
describe many privacy scenarios. The mechanisms we define
can be applied to aggregate user privacy preferences in real
world scenarios.

Where our work is most unique, however, is in the way
we derive both both forward and reverse results. That is,
instead of just providing examples of mechanisms, we will
describe the set of all truthful, private, anonymous chooser
mechanisms. We are able to do this for both the domain of
unrestricted preferences and for single-peaked preferences. To
the best of our knowledge, ours is the first result of this type
for differentially private mechanisms.

The rest of the paper is organized as follows. Section 2
discusses the related work we draw upon. In Section 3, we
formalize the structure of an ε voting system. In Section 4, we
describe our model for users, which is based on mechanism
design. In Section 5, we characterize the outcomes that may be
implemented through truthful, private, and anonymous chooser
mechanisms over an unrestricted domain of user preferences.
In Section 6, we characterize outcomes for a class of user
preferences known as single-peaked, which may be justified
in certain privacy scenarios. We provide some discussion in
Section 7.

II. RELATED WORK

Our work draws on three main bodies of literature: differen-
tially private mechanism design, epsilon selection techniques,
and social choice theory. We discuss each in turn.

A. Truthful and Private Mechanisms

Differential privacy is introduced in Dwork et. al. [1] as
a way to quantify the worst-case privacy loss that a data
subject incurs from the operation of an algorithm. Generally,



differential privacy is achieved by masking the contribution
of a single data point by utilizing noise during computations.
This study also introduces the Laplace mechanism as a means
to satisfy this notion for certain numeric queries by computing
the true value of a query and then perturbing the result.

Shortly afterwards, McSherry and Talwar [12] introduce
differential privacy as a solution concept in mechanism design,
noting that it automatically achieves approximate truthfulness.
In contrast to the standard notion of truthfulness, in which
players have no incentive to strategically manipulate their pref-
erences, approximate truthfulness requires that each player’s
incentive to misrepresent their type is bounded. McSherry and
Talwar also introduce the exponential mechanism, a general
framework that applies to both numeric and non-numeric
outputs and functionally represents all differentially private
mechanisms.

Given this framework, numerous papers have studied the
relationship between truthfulness and differential privacy. For
a comprehensive survey of this work, see Pai and Roth (2013)
[13] and Dwork and Roth [14]. While we do not intend to
reproduce the details of the survey here, we discuss three
pieces of work that are relevant to our inquiry. The first is that
of Huang and Kannan [15]. Using the exponential as a building
block, Huang and Kannan construct a generalization of the
VCG mechanism that was both private and truthful, assuming
side payments are allowed. Nissim et. al. [16] address this
question as well without the need for side payments in a non-
standard mechanism design framework, by modeling player’s
utilities as not only functions over types and outcomes, but
over reactions to those outcomes as well. In our setting, we
prohibit side payments and work in the traditional mechanism
design framework where utilities are over types and outcomes.

The study that is most closely related to our own is by Xiao
[17]. In this work, Xiao constructs a method that transforms
truthful and efficient mechanisms into one that preserves these
properties while additionally satisfying approximate differ-
entially private by sampling from a noisy histogram over
the inputs. This technique of constructing a noisy histogram
could be leveraged for our case, except that we require strict
differential privacy and not the approximate version.

In contrast to the discussed works, our work contributes
to the literature by fully characterizing the set of all truthful,
private, and anonymous mechanisms for utility functions over
two classes of important utility scales: the unrestricted domain
and single-peaked preferences without the need for non-
standard modeling frameworks, approximate privacy guaran-
tees, or side payments.

B. Choosing Epsilon

Within the differential privacy literature, truthful mecha-
nisms and methods for determining an epsilon have been
addressed separately, but not together. As alluded to in the
introduction, there have been many proposed methods for
choosing an optimal ε. The diversity of solutions can be traced
back to the different objectives that each study attempts to
optimize. For example, Naldi and D’Acquisto [4] present a

method for analytically computing the optimal value of ε to
meet a certain level of accuracy for the Laplace mechanism.
Lee and Clifton [5], on the other hand, analyze optimality
with respect to an adversarial model and a class of potential
queries of interest to an adversary. Hsu et. al. [6] take a very
different approach to the previous two methods. In this case,
optimality is determined by the criteria of incentivizing a data
subject to opt-in to a study that would otherwise not take part
in. Our work addresses the question of choosing ε according
to individual preferences.

C. Social Choice Theory

To investigate what ε can be chosen for particular pref-
erences, we draw upon social choice theory. As a branch
of mechanism design, social choice theory is interested in
determining how to consolidate a collection of individual
preferences into a single preference that is reflective of the
society as a whole. One particular application of social choice
theory is voting. In this case, questions lie around the existence
and construction of voting mechanisms that satisfy certain
criteria. However, it often turns out that, depending on the
criteria in question, no such mechanism may exist.

The Gibbard-Satterthwaite [8], [9] Theorem states that any
deterministic and truthful mechanism that acts over a ballot
with at least three candidates where voters can have arbi-
trary preferences over the candidates must be a dictatorship.
Later works demonstrated ways to circumvent this dictatorial
result. Gibbard [10], [11] shows that it is possible to avoid
dictatorships by incorporating voting mechanisms that utilized
randomness. Additionally, Moulin [18] demonstrates that this
dictatorial result can be avoided under a more restrictive set
of assumptions, even with deterministic mechanisms. Instead
of allowing voters to have arbitrary preferences over a discrete
set of options, Moulin considers voters with single-peaked
preferences over the real line R. In this setting, the only
deterministic mechanisms that are simultaneously truthful,
anonymous, and range-preserving are the median and other
order statistics. The contributions of our work can be viewed as
differentially private extensions of these results to the problem
of choosing an ε.

III. ε VOTING FRAMEWORK

Our framework centers around a chooser mechanism C,
which has the purpose of selecting a single parameter ε. We
imagine a set of n users, each with preferences over possible
parameter values. We consider a discrete set of values called
the ballot B = {ε1, ..., εk}, where k ≥ 2. Without loss of
generality, we assume 0 < ε1 < ... < εk <∞.

In practice, one could imagine an ε voting system with more
general ballot entries. For example, instead of having users
select ε directly, users could instead choose from a collection
of candidate values that encode ε in a more comprehensible
way. For the purpose of our analysis, we restrict ourselves to
the case of choosing ε directly.



Fig. 1. A chooser mechanism combines votes and selects a single ε∗.

A. Voting Process

The operation of our chooser mechanism is shown in Figure
1. Starting at the top of this figure, each user i selects a
preferred value from the ballot, vi ∈ B, which we call user
i’s vote (1). Let v = (v1, v2, ..., vn) be the vector of all votes.
This vector is supplied as an input to chooser C (2).

The chooser may incorporate randomness into its output.
For a given input v, there is some probability that C selects
each ε in B. Let ∆(B) be the set of all probability distributions
over B. Given an input v, we can view C as selecting a
single probability distribution from this set, g(v) ∈ ∆(B)
(3). We will use subscripts to denote the components of a
probability distribution; for z ∈ B, g(v)z is the probability
that g(v) assigns to z. The specific choice of ε∗ is a draw
from distribution g (4).
ε∗ is used as an input to the main mechanism M (5) (possi-

bly scaled, as we explain below). Mechanism M operates on
a database d consisting of entries d1, d2, ..., dn̂. Often, we will
assume that each user is associated with exactly one database
entry, but that may not always be the case. For example, in a
database of rides that the users have taken on a transit service,
we could identify the entries of d with individual rides or with
individual users.

Much like C, M may incorporate randomness into its
output. We let O be the set of possible outputs of M , and
∆(O) be the set of probability distributions over this set. We
view M as outputting a single distribution, m(d) ∈ ∆(O) (6).
The output o may be seen as a draw from this distribution (7).

B. Privacy and Anonymity

We review the definition of differential privacy in the
context of mechanism M . Conceptually, a mechanism is
differentially private if the probability of any output from the
mechanism doesn’t change “too much” based on a single data
point.

Definition 1. Mechanism M satisfies ε differential privacy if,
for all databases d and d̂ that differ on at most one element,
and for all measurable sets S ⊆ O,

Pm(d)(S) ≤ eεPm(d̂)(S)

where Px(S) is the probability of S under distribution x.

As we mentioned earlier, it is important that C itself be a
private mechanism. A user’s vote for ε may reveal information
about the contents of database d. After all, asking for strong
privacy may be taken as a signal that a user has something to
hide. If an adversary can learn the votes of individuals, they
may therefore circumvent any privacy guarantee on M .

One idea is to choose a separate εC before any votes are
cast and require that C satisfy εC differential privacy. The
definition mirrors the one above, but the fact that B is finite
simplifies notation.

Definition 2. Mechanism C satisfies εC differential privacy if,
for all vote vectors v and v̂ that differ on at most one element,
and for all z ∈ B,

g(v)z ≤ eεCg(v̂)z

This approach is simple but has some disadvantages. If εC
is set too high and the chooser outputs some far smaller ε∗, the
privacy guarantee of the main mechanism may be meaningless
since more information is being leaked by the chooser than
the main mechanism. On the other hand, it may be wasteful
to set εC smaller than needed, since this will result in a lot of
noise when choosing ε∗.

Another approach is not to set C’s privacy parameter in
advance. Instead, consider setting aside a fraction λ ∈ (0, 1)
of the computed privacy budget ε∗ to apply back to C.

To motivate this idea, suppose that we knew in advance the
exact ε∗ the chooser would select to be the total privacy budget.
Since we require both C and M to be privacy preserving, we
need to allocate part of this budget to C and the remaining
part to M . That is, we could set aside some fraction λε∗ of
the budget to be used by C to compute ε∗, and leave the
remaining (1 − λ)ε∗ to be used in M . Since the sequential
application of differentially private mechanisms results in
additive cumulative privacy loss [14], constructing C and M
in such a manner utilizes the entire privacy budget ε∗.

However, we do not know the value of ε∗ prior to running C.
To circumvent this issue, we adapt the definition of differential
privacy by writing the privacy bound for each output z ∈ B
as though that were the selected ε.

Definition 3. Take λ ∈ (0, 1). A mechanism C : Bn → ∆(B)
satisfies (λ,B) differential privacy if, for all vote vectors v
and v̂ that differ on at most one element, and for all z ∈ B,

g(v)z ≤ eλzg(v̂)z

In other words, we require C to circularly satisfy a differ-
ential privacy guarantee over the candidate it would choose.
Note that the definition is the same as above, except εC has
been replaced by λz. Loosely speaking, there is a differential
privacy bound at each z ∈ B, but the bound is stricter or
looser depending on the z in question.

To further motivate this approach, consider what happens
when the chooser outputs a specific ε∗. If an attacker observes
the outputted ε∗, then the likelihood ratio between v and v̂,
g(v̂)z/g(v)z , is bounded by λε∗. This bound is identical to
the one that would result for λε∗ differential privacy.



Practically speaking, this suggests that the chooser must use
more noise when outputting a smaller ε∗, but may be more
accurate when outputting a higher ε∗. This approach can there-
fore make more efficient use of the available privacy budget
while protecting users. For the rest of this paper, we will use
(λ,B) differential privacy. However, it is straightforward to
adapt all of the results to accommodate εC differential privacy.

In addition to (λ,B) differential privacy, we also require our
mechanisms to satisfy anonymity. Conceptually this criteria
states that the mechanism should not discriminate based on
who is submitting a particular vote.

Definition 4. A mechanism g is anonymous if, for any permu-
tation π : Bn → Bn, and for any v ∈ Bn, g(v) = g(π(v)).

C. Example Chooser Mechanisms

In this section, we provide example mechanisms to motivate
our theoretical results in Sections 5 and 6. We begin with a
mechanism that is entirely unresponsive to voters, but will be
a useful building block for other mechanisms.

Example 1. A mechanism g is degenerate if for every pair
of vote vectors v, w ∈ Bn, g(v) = g(w).

Constructing degenerate mechanisms is straightforward:
take any b = (b1, ..., bk) ∈ ∆(B) and suppose g(v) = b
for all vote vectors v. Such mechanisms trivially satisfy
(λ,B) differential privacy and anonymity, but are completely
non-responsive to individuals preferences. We will refer to
mechanisms that are not degenerate as non-degenerate.

Given a player i, we denote an environment v−i as the votes
that were cast by all players except i [11]. We also use (z, v−i)
to refer to the votes when player i votes for z and all others
cast votes v−i, namely (v1, ..., vi−1, z, vi+1, ..., vn).

Denote the lottery that outputs z ∈ B with probability 1 as
δz . In other words, the xth component of δz is δzx = I(x = z),
where I represents the indicator function.

Example 2. A mechanism g is a deterministic dictatorship if
there exists some player i ∈ [n] such that for all v−i ∈ Bn−1
and for all z ∈ B, g(z, v−i) = δz .

Deterministic dictatorships emerge frequently in the mech-
anism design literature, but they cannot satisfy (λ,B) differ-
ential privacy as there is no randomness involved in the mech-
anism. Furthermore, in terms of responsiveness, only a single
voter has any influence over the outcome of the mechanism.
Such a mechanism is primarily interesting as an extreme case,
and as a component of more complex mechanisms.

Denote the number of votes that alternative z receives in v
as nz(v) = |{i ∈ [n]|vi = z}|.

Example 3. A mechanism g is called a randomized dictator-
ship if

g(v)z =
nz(v)

n

Note that g is indeed a valid probability distribution as n =∑
z∈B nz(v).

In this mechanism, the probability of any ε is proportional to
the number of votes for that ε. It can be understood in terms of
the following procedure: Select a single user at random, then
do exactly what that user wants. This is mathematically equiv-
alent to a probability mixture of deterministic dictatorships. A
randomized dictatorship is anonymous, but it is explicitly not
private, as the following proposition shows.

Proposition 1. If g is a randomized dictatorship, then g cannot
be (λ,B) differentially private.

Proof. By way of contradiction suppose g is (λ,B) differen-
tially private. Then for all vote vectors v, v̂ ∈ Bn that differ
by at most one vote, and for all y ∈ B, g(v̂)y ≤ eλyg(v)y .
Take any x, y ∈ B distinct and define v−i = (x, ..., x),
v = (x, v−i), and v̂ = (y, v−i). Then,

0 <
1

n
= g(v̂)y ≤ eλyg(v)y = 0

yielding a contradiction.

Thus, we see that our requirement for privacy automatically
rules out such dictatorial behavior. Intuitively, randomized
dictatorships fail to meet our privacy requirement since there
is no “plausible deniability” over outcomes that receive just a
single vote. One idea to remedy the situation is to add some
“buffer” to each ε so that the associated probability doesn’t
get too close to zero.

Example 4. A mechanism g is a randomized dictatorship
with phantoms if

g(v)z =
nz(v) + φz
n+

∑
x∈B φx

with φx > 0 for all x ∈ B.

We refer to each φz as the phantom votes for z. While
the use of the term phantom votes may suggest that these φz
take integer values, they are in fact more general and can take
on any positive non-integer value as well. This mechanism
behaves similarly to the randomized dictatorship, with the
exception that their always exists some non-zero probability
of any z ∈ B being output by the mechanism.

Note that this mechanism can be constructed as a probability
mixture of the randomized dictatorship and a degenerate
mechanism which assigns probability φz/

∑
x∈B φx to each

z ∈ B. We will explore the game theoretic and privacy
properties of this mechanism in Section 5.

Our final example chooser is motivated by Moulin’s use
of order statistics in the deterministic setting [18]. For a vote
vector v, let Rz(v) be the set of ranks of the votes cast for z.
That is, let v′ be a permutation of v such for i > j, v′i ≥ v′j .
Then Rz(v) = {i ∈ [n]|v′i = z}.

Example 5. We define a randomized median mechanism
as follows. Define probabilities ξ1, ξ2, ..., ξk, t(1), t(2), ..., t(n)
that collectively sum to 1. Define

g(v)z = ξz +
∑

r∈Rz(v)

t(r)



As a specific case, when n is odd take t(r) = I(r = dn2 e)
and all ξz = 0. This results in the familiar median. Other
order statistics can be created in the same way. In general, a
randomized median can be viewed as a probability mixture
of order statistics, and a denegerate distribution comprised of
ξ1, ξ2, ..., ξk.

As a final special case, consider t(r) = t(r′) for all r, r′ ∈
[n]. This results in a randomized dictatorship with phantoms.
We will discuss the randomized median mechanism further in
Section 6.

D. Algebraic Properties of Vote Switching

At a fundamental level, (λ,B) differential privacy is con-
cerned with vectors that differ in the vote of at most one player.
We are therefore interested in describing the what happens
when a single player switches their vote. That is, if a player
were to change her vote from x to y, how does the new
lottery g(y, v−i) compare with the previous one g(x, v−i)?
As observed by Gibbard (1978) [11], the additive effect of
switches plays a pivotal role in constraining the behavior of
possible mechanisms over a given utility domain. To formalize
this, we define a switch and its corresponding effect as follows.

Definition 5. Take v ∈ Bn. A switch by player i from
candidate x to y is a function Six,y : Bi−1 × {x} × Bn−i →
Bi−1×{y}×Bn−i such that Six,y(x, v−i) = (y, v−i) for any
environment v−i.

Definition 6. Take v ∈ Bn. The effect of a switch Six,y on
vote vector v with vi = x is

A(Six,y, v) = g(Six,y(v))− g(v).

If g is an anonymous mechanism, the effect of a switch
does not depend on which player switches their vote. We will
assume this is true for the remainder of the paper, and therefore
omit the superscript that indicates a specific player.

The following lemmas describe some basic properties of
switches. First off, switches commute with each other.

Lemma 1. Fix v ∈ Bn. For all a, b, x, y ∈ B, Sx,y ◦ Sa,b =
Sa,b ◦ Sx,y .

Proof. Take v ∈ Bn with vi = a and vj = x. Observe that
Sx,y ◦ Sa,b(v) = Sx,y(b, v−i). Furthermore, Sx,y(b, v−i) =
(y, b, v−{i,j}), where v−{i,j} denotes the votes of all voters
except i and j. This is the same as Sa,b(y, v−j), which is
indeed Sa,b ◦ Sx,y(v).

In addition, the effect of composed switches can be addi-
tively decomposed.

Lemma 2. Fix v ∈ Bn. For all a, b, x, y ∈ B, A(Sx,y ◦
Sa,b, v) = A(Sa,b, v) +A(Sx,y, Sa,b(v)).

Proof. Take v ∈ Bn with at least one vote for a and
at least one vote for x. Observe that A(Sx,y ◦ Sa,b, v) =
g
(
Sx,y(Sa,b(v))

)
− g(v). Adding and subtracting g(Sa,b(v))

from the right hand side and grouping terms produces
A(Sx,y, Sa,b(v)) +A(Sa,b, v).

IV. USER MODEL AND TRUTHFULNESS

Next, we formalize the user dynamics of this framework
using mechanism design. Suppose each user has a global
utility function Ui : B × O → R. For all i ∈ [n], user i’s
privacy-specific utility function is given by

ui(ε;C) = Eo∼Mε
[Ui(ε, o;C)]

Conceptually, ui(ε;C) denotes player i’s expected global
utility when ε is used to protect their privacy, taken over the
randomness of all possible outcomes of M . In principle, utility
for a given ε and o could depend on the chooser C. This is
because depending on the nature of C, a particular ε may leak
more or less information about the preferences of users. For
the rest of this paper, however, our results will refer to a fixed
C, so we generally refer to this quantity as ui(ε). Since B is
finite, we can represent the utility over all candidates in the
ballot with a single vector ui ∈ Rk, where the jth component
of this vector refers to ui(εj).

Given a ballot B, each voter i has some preference ordering
over B. We will refer to the top candidate in a player i’s
preference profile as their type, which we denote as αi. More
formally, αi is a type for voter i if ui(αi) ≥ ui(β) for all
β ∈ B. We say that a voter is indifferent between candidates
x and y if ui(x) = ui(y). If a voter is indifferent between
their top candidates over B, we will refer to each of these top
candidates as player i’s types.

As is common in the mechanism design literature, we
assume that voters seek to optimize their expected utility under
the mechanism. Formally, suppose voter i reports vi ∈ B to
the mechanism. Then the expected utility for player i, when
other voters submit v−i ∈ Bn−1, is given by the dot product:

Eε∼g(vi,v−i)[ui(ε)] = ui · g(vi, v−i)

Using this machinery, we are ready to formalize truthfulness.
Intuitively, a mechanism g is truthful if truthfully reporting a
type to the mechanism is at least as good as lying.

Definition 7. A mechanism g is truthful if reporting a type is
an undominated strategy. That is, for all voters i with type αi,
for all β ∈ B, and for all v−i ∈ Bn−1,

ui · g(αi, v−i) ≥ ui · g(β, v−i)

Notice that when a player has multiple types, reporting any
one of them meets the requirement for truthfulness. In this
case, switching between the utility-maximizing alternatives
does not alter the expected utility of the player. This is
formalized by the following lemma.

Lemma 3. Suppose g is truthful. If x, y ∈ argmaxz∈Bui(z),
then for any environment v−i ∈ Bn−1, ui ·A(Sx,y, (x, v−i)) =
0 = ui ·A(Sy,x, (y, v−i)).

Proof. Since both ui(x) ≥ ui(z) and ui(y) ≥ ui(z) for
all z ∈ B, ui(x) = ui(y). The truthfulness of g implies
that ui · g(x, v−i) ≥ ui · g(y, v−i) and ui · g(y, v−i) ≥
ui · g(x, v−i), establishing ui · g(y, v−i) = ui · g(x, v−i).
Algebraic manipulation yields ui ·

(
g(y, v−i) − g(x, v−i)

)
=



0 = ui ·
(
g(x, v−i) − g(y, v−i)

)
. Applying the definition of

effect to both sides proves the claim.

V. MECHANISMS OVER THE UNRESTRICTED DOMAIN

In this section, we explore mechanisms over the unrestricted
domain. That is, we allow for utility functions to attain
arbitrary values without any restriction on their functional
form. We begin with a characterization of the entire class of
mechanisms that satisfy our desiderata.

Theorem 1. Suppose |B| ≥ 3. Over the unrestricted domain, g
is truthful, (λ,B) differentially private, anonymous, and non-
degenerate if and only if g is a randomized dictatorship with
phantoms

g(v)z =
nz(v) + φz
n+

∑
x∈B φx

where φx ≥
(
eλx − 1

)−1
for all x ∈ B.

Proof. ( ⇐= ) Let M = n +
∑
x∈B φx. Suppose g(v)z =

M−1
(
nz(v) + φz

)
for constants φx ≥

(
eλx − 1

)−1
for all

x ∈ B. It is clear that g is anonymous and non-degenerate.
To demonstrate the truthfulness of g, consider a voter i with
type αi. For any alternative x ∈ B, and for any v−i ∈ Bn−1,
observe that

ui ·
(
g(αi, v−i)− g(x, v−i)

)
=
∑
z∈B

ui(z)
(
g(αi, v−i)z − g(x, v−i)z

)
= M−1

∑
z∈B

ui(z)
(
nz(αi, v−i)− nz(x, v−i)

)
Within this summand, nz(αi, v−i) = nz(x, v−i) for all z /∈
{αi, x}. Furthermore, nx(αi, v−i) − nx(x, v−i) = −1 and
nαi(αi, v−i)− nαi(x, v−i) = 1. As such,

ui ·
(
g(αi, v−i)− g(x, v−i)

)
= M−1

(
ui(αi)− ui(x)

)
≥ 0

where the inequality follows due to M > 0 and αi being voter
i’s type.

Lastly, we demonstrate that g satisfies (λ,B) differential
privacy. Take any vote vectors (y, v−i) and (z, v−i) and
consider the following ratio Rx:

Rx =
g(vi = y, v−i)x
g(vi = z, v−i)x

=
nx(y, v−i) + φx
nx(z, v−i) + φx

=
nx(v−i) + I(y = x) + φx
nx(v−i) + I(z = x) + φx

Note that this ratio is maximized when y = x and z 6= x.
Since φx ≥

(
eλx − 1

)−1
, it follows that

Rx ≤
nx(v−i) + 1 + φx
nx(v−i) + φx

= 1+
1

nx(v−i) + φx
≤ 1+

1

φx
≤ eλx

establishing (λ,B) differential privacy.
( =⇒ ) The details of this direction of the proof can be found
in Appendix A.

This theorem fully characterizes the set of non-degenerate,
truthful, anonymous, (λ,B) differentially private mechanisms.

There are a few key observations to make here. First off, note
that φx ≥

(
eλx− 1

)−1
implies φx > 0. As such, the presence

of phantoms is necessary to assure that g can meet the desired
privacy guarantee.

Next, observe that the lower bound on φx is decreasing in x.
Conceptually this means that more phantom noise is required
to protect the privacy of those who voted for small x. This
matches intuition, as more noise is indeed required to protect
those who desire stronger privacy guarantees. Alternatively,
when x is large this tells us that we require less of a
contribution from φx, as these individuals who cast their vote
for large x prefer strong accuracy guarantees over privacy.

In conclusion, the only mechanisms that satisfy our desider-
ata over the unrestricted domain are random dictatorship with
phantoms. So while we technically met our goal of producing
neither a degenerate nor dictatorial outcome, we ended up
showing that the only ε voting mechanism without utility
restrictions must be some probability mixture of the two.

VI. MECHANISMS OVER SINGLE-PEAKED PREFERENCES

The analysis from the previous section demonstrates just
how limited the class of truthful, private, and anonymous
mechanisms is when operating in the unrestricted domain.
Conceptually this makes sense, as both the space of truthful
mechanisms and the space of private mechanisms are limited.
Taking their intersection necessarily results in a space that
is even smaller. In this section, we move away from the
unrestricted domain setting by imposing an assumption called
single-peaked preferences (SPP). Although this reduces gen-
erality, this is a common assumption that may be realistically
applied to many scenarios.

Definition 8. A utility function satisfies single-peaked prefer-
ences (SPP) over B if there exists some α ∈ B, which we call
a peak, such that for all x, y ∈ B, x ≤ y ≤ α =⇒ u(x) ≤
u(y) ≤ u(α) and α ≤ x ≤ y =⇒ u(α) ≥ u(x) ≥ u(y).

A careful reader will note that this definition slightly differs
from the definition of SPP presented in the seminal paper by
Moulin [18]. In particular, Moulin’s definition requires the
peak be unique. In our setting, it is more natural to allow
users to be indifferent among multiple top ε’s.

SPP are well-motivated to capture many common privacy
scenarios. We discuss a few of them here. First off, we can
imagine a user who is very privacy conscious and does not
care much for accurate analysis from the use of their data.
In this case, the user’s utility function would decrease as ε
increases, satisfying SPP with α = ε1. On the other end of
the spectrum, a user may be solely interested in the furthering
science without any regard for privacy at all. In this case, the
user’s utility function would be some increasing function of ε
which satisfies SPP with α = εk.

SPP can also capture cases in between these two extremes.
A user may value the insights that come from more accu-
rate outputs up to a certain threshold, but consider further
increases in ε not worth the privacy loss. In such scenarios,
α ∈ {ε2, ..., εk−1}. It is possible to derive utility functions like



this under reasonably natural model assumptions. For example,
several studies have encountered a O(ε2) bound on the utility
loss associated with privacy [19], [20]. This is suggestive of
utility functions that are concave, at least for small ε.

Comparing to Moulin’s results for the deterministic domain,
one might wonder if the randomized median game is a truthful
and anonymous mechanism. It turns out that this is correct, but
it is not the only truthful and anonymous mechanism in this
setting. Instead, we define a generalized version of this below.

Before we begin, we introduce new notation and terminol-
ogy. For z ∈ B, denote the neighbors of z as z+ and z−.
In particular, z+ is the smallest ε ∈ B that is larger than
z. Similarly, z− is the largest ε ∈ B that is smaller than z.
Such notation will be helpful when considering neighboring
switches. Define the rank of z as the number of votes that vote
for an alternative no larger than z, rz(v) = |{i ∈ [n]|vi ≤ z}|.

Definition 9. A mechanism g is a generalized randomized
median if there exists a set of functions, which we call
transfers, {tz : [n] → [0, 1]|z ∈ B} and a set of base masses
{ξz ≥ 0|z ∈ B} such that

g(v)z =

rz(v)∑
r=1

tz(r)−
rz− (v)∑
r=1

tz−(r) + ξz

holds for all z ∈ B and is a valid probability distribution.

Notice that if we require tz(r) = tz′(r) for all z, z′, we recover
the randomized median mechanism from Example 5.

Theorem 2. For SPP, a mechanism g is truthful and anony-
mous if and only if g is a generalized randomized median.

Proof. ( ⇐= ) Anonymity is clear. To demonstrate truthful-
ness, it is sufficient to show that for a player i with type
αi and for all v−i ∈ Bn−1, (1) z ≤ z+ ≤ αi implies
ui · g(z, v−i) ≤ ui · g(z+, v−i), and (2) αi ≤ z ≤ z+ implies
ui · g(z, v−i) ≥ ui · g(z+, v−i).

To do so, we first show that A(Sz,z+ , v)y = 0 if y < z or
y > z+. Observe that if y < z, then ry(z, v−i) = ry(z+, v−i)
and ry−(z, v−i) = ry−(z+, v−i). A similar argument holds
for the case when y > z+ as well. Using this insight about
the ranks, it follows that

A(Sz,z+ , v)y = g(Sz,z+(v))y − g(v)y

= g(z+, v−i)y − g(z, v−i)y

=

(
ry(z

+,v−i)∑
r=1

ty(r)−
ry− (z+,v−i)∑

r=1

ty−(r)

)

−

(
ry(z,v−i)∑
r=1

ty(r)−
ry− (z,v−i)∑

r=1

ty−(r)

)
= 0

Next, we prove (1). Suppose that z ≤ z+ ≤ αi. Then

ui ·
(
g(z+, v−i)− g(z, v−i)

)
=
∑
y∈B

ui(y)
(
g(z+, v−i)y − g(z, v−i)y

)
=
(
ui(z

+)− ui(z)
)(
g(z+, v−i)z+ − g(z, v−i)z+

)

By SPP, ui(z+)− ui(z) ≥ 0. Also,

g(z+, v−i)z+ − g(z, v−i)z+

=

( rz+ (z+,v−i)∑
r=1

tz+(r)−
rz+ (z,v−i)∑

r=1

tz+(r)

)

+

(
rz(z,v−i)∑
r=1

tz(r)−
rz(z

+,v−i)∑
r=1

tz(r)

)
Observe that rz+(z+, v−i) = rz+(z, v−i), producing

g(z+, v−i)z+ −g(z, v−i)z+ =

rz(z,v−i)∑
r=1

tz(r)−
rz(z

+,v−i)∑
r=1

tz(r)

Furthermore, either rz(z+, v−i) = rz(z, v−i) or rz(z+, v−i)+
1 = rz(z, v−i). In the first case, the difference in the sums is
0. In the second case, the difference in the sums is precisely
tz(rz(z, v−i)) ≥ 0. Thus, g(z+, v−i)z+ − g(z, v−i)z+ ≥ 0.

This yields ui ·
(
g(z+, v−i) − g(z, v−i)

)
≥ 0, which

concludes the proof of (1). By a symmetric argument it is
easily seen that (2) holds as well, establishing truthfulness.
( =⇒ ) The details of this direction of the proof can be found
in Appendix B.

Note that this result holds for any ballot with |B| ≥ 2. Our
result from the previous section over the unrestricted domain
required |B| ≥ 3. When |B| = 2, every utility function in the
unrestricted domain satisfies our extended definition of SPP.
This produces the following.

Corollary 1. Suppose |B| = 2. Over the unrestricted domain,
g is truthful and anonymous if and only if g is a generalized
randomized median.

Next, we turn our attention to (λ,B) differential privacy.

Lemma 4. A generalized randomized median g meets the
bound,

g(v)x/g(Sz,z+(v))x ≤ eλx

for all v ∈ Bn, for all x ∈ B, and for all neighboring switches
Sz,z+ , if and only if g is (λ,B) differentially private.

Proof. The reverse direction proceeds immediately from the
definition of (λ,B) differential privacy. For the forward direc-
tion, consider a player i, an environment v−i, and two votes,
εa, εb ∈ B. Consider the case that εa < εb. We need to show
that

g(εa, v−i)x/g(εb, v−i)x ≤ eλx,

for all x ∈ B. We can write the left hand side as the product

g(εa, v−i)x
g(εb, v−i)x

=
g(εa, v−i)x
g(εa+1, v−i)x

·g(εa+1, v−i)x
g(εa+2, v−i)x

·...·g(εb−1, v−i)x
g(εb, v−i)x

Notice that each term in the product has the form,

g(v̂)x
g(Sz,z+(v̂))x

for some vector v̂ and some neighboring switch Sz,z+ . If x /∈
{z, z+}, the fraction is 1. If x = z+, the fraction is at most



1 since the switch transfers probability into x, making the
denominator larger than the numerator. If x = z, the fraction
is at most eλx by assumption. The entire product is therefore
bounded by eλx as required. A similar argument holds for the
case that εb < εa, completing the proof.

Theorem 3. To satisfy (λ,B) differential privacy, the follow-
ing system of linear constraints must hold for all z ∈ B and
all ranks ρ. For every z > ε1,

tz(ρ) +
∑ρ−1
r=1

(
tz(r)− tz−(r)

)
+ ξz∑ρ−

r=1

(
tz(r)− tz−(r)

)
+ ξz

≤ eλz

Additionally, for every z < εk,

tz−(ρ) +
∑ρ
r=1

(
tz(r)− tz−(r)

)
+ ξz∑ρ

r=1

(
tz(r)− tz−(r)

)
+ ξz

≤ eλz

Also,

tε1(ρ) +
∑ρ−1
r=1 tε1(r) + ξε1∑ρ−1

r=1 tε1(r) + ξε1
≤ eλε1

and

tεk−1
(ρ) +

∑n
r=1 tεk(r)−

∑ρ
r=1 tεk−1

(r) + ξεk∑n
r=1 tεk(r)−

∑ρ
r=1 tεk−1

(r) + ξεk
≤ eλεk

Proof. We provide a computation for the first part of the claim,
noting that the rest are easily computable. To satisfy (λ,B)
differential privacy, we require eλ(z) ≥ g(v)z/g(Sz,z+(v))z .
Let v = (z, v−i) and v̂ = (z−, v−i). Note that rz(v) = rz(v̂)+
1 and rz−(v) = rz−(v̂). Fix a switch Sz,z+ and a rank ρ and
consider some environment v−i such that rz(z, v−i) = r. The
right side of the inequality becomes∑rz(z,v−i)

r=1 tz(r)−
∑rz− (z,v−i)
r=1 tz−(r) + ξz∑rz(z+,v−i)

r=1 tz(r)−
∑rz− (z+,v−i)
r=1 tz−(r) + ξz

=
tz(ρ) +

∑rz(v)
r=1 tz(r)−

∑rz− (v)
r=1 tz−(r) + ξz∑rz(v̂)

r=1 tz(r)−
∑rz− (v̂)
r=1 tz−(r) + ξz

The largest that this fraction can be is for an environment v−i
in which no votes equal z, in which case rz(v̂) = rz−(v̂) =
ρ − 1. Plugging this in and simplifying, we satisfy (λ,B)
differential privacy if

tz(ρ) +
∑ρ−1
r=1

(
tz(r)− tz−(r)

)
+ ξz∑ρ−1

r=1

(
tz(r)− tz−(r)

)
+ ξz

≤ eλz

VII. DISCUSSION

We began this study with the observation that we could
incorporate user’s privacy preferences into an information
system by having them vote on the privacy parameters they
would like to have. We presented elements that such an ε
voting system would need. We then asked whether it was
possible for a system to aggregate user preferences over ε
in a reasonable way while also respecting privacy. In fact, our
results are quite mixed.

For one thing, user preferences may not always be well-
behaved. For example, there may be a threshold value at which
an adversary becomes convinced enough of a user’s sensitive
attribute to act on that information. Utility functions may
also be single-troughed instead of single-peaked. This could
occur in a setting where an individual has some secret they
would like to hide, but once it’s out, they’d rather everyone
else’s secret be transparent too. Theorem 1 states that for
general utility functions, there is a very restrictive class of
feasible mechanisms for choosing ε. These are the ones we
call randomized dictatorships with phantoms. As a result, we
cannot hope to meet, or even approximate, standards such as
welfare maximization in the general case.

There are privacy scenarios in which we may expect utility
functions to be better-behaved. Theorem 2 states that when
utility functions are single-peaked, we can do better than the
general case. In fact, we can implement a broader class of
mechanisms we call generalized randomized medians.

Generalized randomized medians exhibit well-behaved
properties, especially as the number of users n grows. For
example, with large n a generalized randomized median can
come close to approximating a simple median, or any other
order statistic. These are certainly more responsive to user
preferences than randomized dictatorships with phantoms. On
the other hand, it is still impossible to approximately maximize
welfare without quite strong assumptions about the shape of
utility functions.

Our model assumes that users are able to perceive and judge
the effects of a privacy parameter. Further work is needed to
test the limits of this assumption, how privacy parameters like
ε may be presented to be salient to a general audience, or how
to improve the usability of private algorithms more generally.
Our hope is that efforts like this could lead to users that are
empowered to understand and affect the use of their personal
information.
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APPENDIX A
PROOF OF ( =⇒ ) DIRECTION OF THEOREM 1

Step 1: Show that any switch from alternative x to y only
alters the probability that g assigns to x and y.

Take any environment v−i and suppose player i switches
their vote from vi = x to y. We claim that A(Sxy, v)z = 0 for
all z ∈ B−{x, y}. By way of contradiction, suppose that there
is some z ∈ B − {x, y} such that A(Sx,y, v)z = 0. Consider
the utility function ui(ε) = −I(ε = z). Since both x and y
maximize ui, Lemma 3 implies ui ·A(Sx,y, v) = 0. But then

0 = ui ·A(Sx,y, v) = ui(z)A(Sx,y, v)z 6= 0

producing a contradiction. Thus, g must only move probability
between x and y.

Step 2: Show that the mass moved by a switch from x to y is
the same as the mass moved by a switch from y to x.

By Step 1, a switch between x and y only transfers mass
between x and y. So A(Sx,y, v) = mx,y(v)(δy − δx) for
some constant mx,y(v) ∈ R. We will refer to mx,y(v) as the
mass moved from x to y in under v. Since g is a probability

distribution, the gain in probability mass for y from the switch
must be offset by a loss in mass for x, and vice-versa. Thus,

g(Sx,y(v))y − g(v)y = −
(
g(Sx,y(v))x − g(v)x

)
= g(v)x − g(Sx,y(v))x

= g(x, v−i)x − g(y, v−i)x

= g(Sy,x(v))x − g(v)x

yielding A(Sx,y, v)y = A(Sy,x, v)x. So mx,y(v)(δy − δx)y =
my,x(v)(δx − δy)x, implying mx,y(v) = my,x(v).

Step 3: Deduce that g(v)y is a function of ny(v).
Consider v, w ∈ Bn, such that that ny(v) = ny(w). Denote

ny(w) = l. By anonymity, we can assume without loss of
generality that the first n− l components of both v and w are
non-y, and the last l components are y.

Utilizing Step 1, we can construct a sequence of n −
l switches that transforms v into w while preserving the
probability mass at alternative y. In particular, consider
(Sv1,w1

, ..., Svn−l,wn−l). Define T 0 as the identity map, and
T j = Svj ,wj ◦ ... ◦ Sv1,w1

for all j ∈ {1, ..., n− l}.
Note that each switch Svj ,wj is a switch between two

votes that are not alternative y. As such, Step 1 implies
that A(Svj ,wj , T

j−1(v))y = 0. By the definition of effect, it
follows that g(T j(v))y = g(T j−1(v))y .

By construction, this process terminates with Tn−l(v) = w.
Furthermore, T 0(v) = v. Hence,

g(v)y = g(T 0(v))y = ... = g(Tn−l(v))y = g(w)y

Thus, g(v)y produces the same output for all inputs with the
same number of votes for y. So g(v)y is some function of the
number of votes. Call this function fy(ny(v)).

Step 4: Show that the mass moved from a switch between x
and y is the same regardless of vote vector.

We want to show that for any v, w ∈ Bn, mx,y(v) =
mx,y(w). By Step 2, it is sufficient to show that A(Sx,y, v) =
A(Sx,y, w). To do so, we choose a sequence of switches
(T 1, T 2, ..., T q) such that applying them to v in order results
in w. One algorithm for constructing such a sequence is the
following. Let T be an empty sequence. Looping over all
i ∈ [n],
• If vi = wi, do nothing
• Else if vi 6= wi and {vi, wi} 6= {x, y}, add switch Svi,wi

to the end sequence T
• Else, choose some z ∈ B−{x, y} and add switches Svi,z

and Sz,wi to the end of sequence T in that order
Denote the resulting sequence T = (T 1, T 2, ..., T q). Notice
that we have constructed the sequence T specifically such that
none of the switches are Sx,y or Sy,x. For any v̂ ∈ Bn, and
any T i in the above sequence, Lemma 1 implies

A(Sx,y ◦ T i, v̂) = A(T i ◦ Sx,y, v̂)

Using Lemma 2, we can expand both side to produce

A(Sx,y, T
i(v̂)) +A(T i, v̂) = A(Sx,y, v̂) +A(T i, Sx,y(v̂))



By Step 2, note that the first terms on each side are vectors
that point in the direction δy−δx. The second terms also point
in the same direction as each other, but in a direction that is
not δy − δx by the way we’ve constructed the sequence T i.
Denote the first term on the left side as W , the second term
on the left as X , the first term on the right side as Y , and the
second term on the right as Z. Observe that WXY Z forms a
quadrilateral in Rk. The above analysis of directions implies
that W and Y are parallel to one another, and X and Z are
also parallel to one another. Hence WXY Z is a parallelogram,
implying that opposite sides must have the same magnitude.
In particular, the lengths of W and Y are equal, yieliding
A(Sx,y, v̂) = A(Sx,y, T

i(v̂)). Repeated application of this
relationship yields

A(Sx,y, v) = A(Sx,y, T
1(v)) = A(Sx,y, T

2 ◦ T 1(v))

= ... = A(Sx,y, T
q ◦ ... ◦ T 1v) = A(Sx,y, w)

Step 5: Show that any switch between two alternatives on the
ballot results in the transfer of a unique probability mass.

To establish that the transfer of mass is the same between
any switch, consider the event where player i switches votes
from x to y. By Step 4, this mass is the same regardless of
the vote vector v. As such, when referring to mx,y(v) we can
omit v. Denote this value as mx,y . So by Step 2,

mx,y = A(Sx,y, v)x = A(Sy,x, v)y = g(x, v−i)x − g(y, v−i)x

Similarly, when player i deviates from x to z,

mx,z = A(Sx,z, v)z = A(Sz,x, v)x = g(x, v−i)x − g(z, v−i)x

Subtracting these quantities, mx,y − mx,z = g(z, v−i)x −
g(y, v−i)x. By Step 3, we’ve established that g(v)x =
fx(nx(v)). Since z 6= x and y 6= x, it follows that
nx(z, v−i) = nx(y, v−i). So, g(z, v−i)x = g(y, v−i)x. Hence
mx,z = mx,y . Thus, any deviation from a candidate x to any
other alternative must transfer the same mass.

By Step 2, it follows that mx,y = my,x and mx,z = mz,x,
so my,x = mz,x as well. Thus, any deviation from an
alternative that is not z to the candidate z must transfer the
same mass. Combining these two results, it follows that any
deviation results in the same mass being moved under any
switch. Denote this value as m.

Step 6: Deduce that gz has the desired functional form.
Fix v−i ∈ Bn−1 and suppose player i switches their vote

from x to y. Then,

m = g(y, v−i)y − g(x, v−i)y

= fy(ny(y, v−i))− fy(ny(x, v−i))

= fy(ny(y, v−i))− fy(ny(y, v−i)− 1)

=
fy(ny(y, v−i))− fy(ny(y, v−i)− 1)

ny(y, v−i)− (ny(y, v−i)− 1)

which implies that fy(ny(v)) = mny(v) + by for some
constant by .

Next, we establish that all by ≥ 0. By way of contradiction,
suppose there is some y ∈ B such that by < 0. Consider

the case where all individuals vote for some x 6= y; i.e. v =
(x, ..., x). Then g(v)y = mny(v)+by = by < 0, contradiction
to fact that this is a probability.

Furthermore, we claim that m > 0. Since g is truthful, if
voter i has type αi, then any deviation to an alternative x ∈ B
yields ui ·

(
g(αi, v−i)− g(x, v−i)

)
≥ 0. Performing the same

algebra and deductions as in the (⇐= ) direction of the proof
above, we see that

0 ≤ ui ·
(
g(αi, v−i)− g(x, v−i)

)
= m

(
ui(αi)− ui(x)

)
Since voter i has type αi,

(
ui(αi)−ui(x)

)
≥ 0. Thus, m ≥ 0.

Since g is non-degenerate, m 6= 0. Thus, m > 0. As such,
define φz = m−1bz . Then,

g(v)z = m
(
nz(v) + φz

)
Since g(v) is a probability distribution,

1 =
∑
x∈B

m(nz(v) + φx) ⇐⇒ m =

(
n+

∑
x∈B

φx

)−1
Therefore

g(v)z =
nz(v) + φz
n+

∑
x∈B φx

Step 7: Show that each φx ≥
(
eλx − 1

)−1
.

Since g is (λ,B) differentially private, for any vote vectors
(y, v−i) and (z, v−i) it follows that

g(vi = y, v−i)x
g(vi = z, v−i)x

=
nx(v−i) + I(y = x) + φx
nx(v−i) + I(z = x) + φx

≤ eλx

Examining this middle ratio, we see there are four cases:

g(vi = y, v−i)x
g(vi = z, v−i)x

=


1 y = x and z = x
nx(v−i)+1+φx
nx(v−i)+φx

y = x and z 6= x
nx(v−i)+φx
nx(v−i)+1+φx

y 6= x and z = x

1 y 6= x and z 6= x

Since g satisfies (λ,B) differential privacy, the constant φx
must be restricted to hold for all four cases. Observe that
criteria 1, 3, and 4 are less than or equal to 1 for every v−i,
so this bound holds for any φx ≥ 0 . For the second criteria
to hold, it must be that for every v−i ∈ Bn−1,

nx(v−i) + 1 + φx
nx(v−i) + φx

≤ eλx

The left hand side can be rewritten as(
nx(v−i) + φx

)
+ 1

nx(v−i) + φx
= 1 +

1

nx(v−i) + φx

so the above inequality reduces to

φx ≥
(
eλx − 1

)−1 − nx(v−i)

Note that the bound holds for nx(vi) = 0, so it automatically
holds for all other values. Thus, φx ≥

(
eλx − 1

)−1
.



APPENDIX B
PROOF OF ( =⇒ ) DIRECTION OF THEOREM 2

Step 1: Show that a switch between neighboring ε’s only
affects the probability g assigns to those ε’s.

Let Sz,z+ be a switch between z and z+. We claim that
A(Sz,z+ , v) = mz,z+(v)(δz

+ − δz) for some mz,z+(v) ∈ R.
By way of contradiction, suppose not. Then there exists some
d /∈ {z, z+} such that A(Sz,z+ , v)d 6= 0. We first the consider
the case that d < z.

Let l = min{ε ∈ B|A(Sz,z+ , v)ε 6= 0}. As such, l ≤ d < z.
Define a utility function, ui(x) = −I(x ≤ l). Since both z
and z+ are at the top of i’s preference list, Lemma 3 implies
ui ·A(Sz,z+ , v) = 0. But then,

0 = ui ·A(Sz,z+ , v) = ui(l)A(Sz,z+ , v)l 6= 0

producing a contradiction. When d > z+, a symmetric
argument to the one above holds, establishing the claim.

Step 2: Show that the effect of a neighboring switch is
independent of the vote vector, and the mass transferred is
a function of the rank of the starting point.

To complete this step, we show that for any v, w ∈ Bn with
rz(v) = rz(w), A(Sz,z+ , v) = A(Sz,z+ , w).

Take v, w ∈ Bn such that rz(v) = rz(w). Denote rz(w)
as r. Since g is anonymous, we can assume without loss of
generality that the first r components of both v and w are
less than or equal to z, and the remaining n− r components
are larger than z. We can construct a sequence of switches
T = (T 1, ..., T q) such that applying them in order transforms
v into w. One algorithm for constructing such a sequence is
the following. Let T be the empty sequence. Looping over all
i ∈ [n],

• If vi = wi, do nothing
• Else if vi < wi, add switches Svi,v+i , ..., Sw−i ,wi to T in

that order
• Else, add switches Svi,v−i , ..., Sw+

i ,wi
to T in that order

Denote the resulting sequence T as (T 1, ..., T q). Note that
none of the switches T i in T are Sz,z+ or Sz+,z by construc-
tion. For any v̂ ∈ Bn, and any T i in the above sequence,
Lemma 1 implies

A(Sz,z+ ◦ T i, v̂) = A(T i ◦ Sz,z+ , v̂)

Using Lemma 2, and utilizing the same parallelogram style
argument present in Theorem 1 Step 4 with Step 1 above,
it follows that A(Sz,z+ , v̂) = A(Sz,z+ , T

i(v̂)). Repeated
application of this relationship yields

A(Sz,z+ , v) = A(Sz,z+ , T
1(v)) = A(Sz,z+ , T

2 ◦ T 1(v))

= ... = A(Sz,z+ , T
q ◦ ... ◦ T 1v) = A(Sz,z+ , w)

Thus, A(Sz,z+ , v) produces the same output for all inputs v
with the same rank for z. So A(Sz,z+ , v) is some function of
the rank rz(v). By Step 1, A(Sz,z+ , v) = mz,z+(v)(δz

+−δz).
Since the direction is uniquely determined by (δz

+ − δz), the
rank can only affect the mass transfer. Denote mz,z+(v) =

tz(rz(v)) for some function tz . While this proves the claim,
we will find it more useful to describe mz+,z(v) instead. For
any v−i ∈ Bn−1, observe that

mz+,z(z
+, v−i) = −A(Sz+,z, (z

+, v−i))z+

= A(Sz,z+ , (z
+, v−i))z = mz,z+(z, v−i)

= tz(rz(z, v−i)) = tz(rz(z
+, v−i) + 1)

Thus, mz+,z(v) = tz(rz(v)+1). Furthermore, the truthfulness
of g implies that the range of tz must be non-negative.

Step 3: Deduce that g has the desired functional form.
Let v0 be the vector of votes (εk, εk, ..., εk). For a given v,

we construct a series of switches, (T 1, ..., T q), such that each
Ti is downward neighboring switch, and v = T q ◦ ...◦T 1(v0).
To do so, consider the following algorithm. Initialize T to be
the empty sequence. Loop over all i ∈ [n]:
• If vi = εk, do nothing
• Else, add Sεk,εk−1

, ..., Sv+i ,vi
in order to the end of T

Note that since each T i is a neighboring transfer, Step 1
guarantees the probability mass of g(v0) is only altered at
the two components where the switch occurred. By Lemma 2,

g(v)z = g(T q ◦ ... ◦ T 1(v0))z

= g(v0)z +A(T 1, v0)z + ...+A(T q, T q−1 ◦ ... ◦ T 1(v0))z

First, we consider z < εk. By Step 1, the only effects that
are nonzero at z are those for switches Sz+,z and Sz,z− . Since
rz(v) = |{i ∈ [n]|vi ≤ z}|, there exist rz(v) switches of
Sz+,z in T , which transfer probability into g(v)z . Label these
I1, I2, ..., Irz(v) in the order in which they occur in T , and
let vi be the vector of votes right before Ii is applied. Notice
that before any of the {Ii} is applied, all votes are greater
than z, so rz(v1) = 0. By Step 2, the mass moved into z by
I1 is therefore tz(0 + 1) = tz(1). Similarly, right before I2 is
applied, we have rz(v2) = 1 so tz(2) mass is moved into z by
I2. This holds for all remaining I3, I2, ..., Irz(v). Hence the
total mass moved into g(v)z by incoming transfers is therefore∑rz(v)
r=1 tz(r).
By a similar argument, there exist rz−(v) switches of Sz,z− ,

which move a total mass of
∑rz− (v)
r=1 tz−(r) away from g(v)z .

Defining ξz = g(v0)z , we finally have,

g(v)z =

rz(v)∑
r=1

tz(r)−
rz− (v)∑
r=1

tz−(r) + ξz

For εk, we arbitrarily choose tεk : {1, ..., n} → [0, 1] and ξεk
such that

∑n
r=1 tεk(r)+ ξεk = g(v0)εk . There are no switches

in {T i} that transfer mass into k, but there are rεk−1
(v) that

transfer mass out. By a similar argument to above, the total
mass transferred out is

∑rεk−1
(v)

r=1 tεk−1
(r), which implies that

g(v)εk has the correct form.


