INDEX: a status report

November 1999

Pravin Varaiya, Hal Varian Ric hard Edell, Karyen Chu, Walter Beckert EECS, SIMS, Economics at UC Berkeley

Motivation

Internet use currently has zero marginal cost for use
Result: congestion (see next slide)
Internet currently uses one quality of service (QoS)
Differential quality of service requires differential pricing

Research on QoS
How to engineer QoS: a lot of work
What QoS costs: a little work
How users value QoS: nothing
Goal of INDEX project: measure how users value QoS

Modem use by day and user

Information about INDEX

INDEX $=$ Internet DEmand eXperiment

Web page: http://www.index.berkeley.edu

Support: Cisco Systems, Pacific Bell, Hewlett Packard, and National Science Foundation.

What is our goal?

Goal: Measure how much users are willing to pay for Internet Quality of Service (QoS).

Dimensions of QoS
bandwidth (symmetric and asymmetric)
volume
congestion
delay to connect etc.

How do we do it?

- Give 150 Berkeley people "free" ISDN service
hardware and setup costs are free
we cover PacBell's monthly charges
- Offer them different QoS for different prices
- Simulate the QoS
same QoS choices for several weeks
different prices each week
- Note: real money, simulated service

Architecture

Interface for INDEX: settings

Interface: experiment

INDEX Project "Control Center"

File Help

\section*{Settings Experiment | Prices | Choices |
| :--- | :--- | :--- |}

Traffic Volume/Capacity-Based Charges

This experiment will end at 30-Nov-98 3:00:52 AM PST

Connection Status Session $\$ 0.08$

Interface: pricing

Interface: choices

Interface: asymmetric BW

Interface: volume pricing

Interface: billing

09/15/1998	128kbps service 23:13:08-23:13:22		
	0.000 megabyte	0.0010 .0000	0.01000
09/15/1998	12816ps service 23:14:28-23:14:38		
	0.000 megabyte	0.0010 .0000	0.0000
09/15/1998	128kbps service $23: 20: 20-09 / 1600008: 15$		
	0.152 megabyte	0.0010 .0002	0.0002
09/16/1998	128kbps service 12:58.38-13:07:00		
	8.35 mimute	0.0080 .0668	
	0.607 megabyte	0.0600 .0364	0.1032
09/16/1998	128kbps service 13:09:51-13:09:57		
	0.10 mirnute	0.0080 .0008	
	0.000 megabyte	0.0600 .0000	0.0008

Where we are

Started providing service April 1, 1998
have about 70 subjects
subjects proceed through experiments asynchronously
Have run
symmetric bandwidth
asymmetric bandwidth
volume pricing
bandwidth + volume mixture (predetermined + self-selected)
pay upfront for flat pricing

Symmetric bandwidth

Usage overall:

Note: 8 kbs is free

Scatter plots

Scatter plots, continued

Demand estimates

Reduced form: estimate demand as a function of price amount consumed $=$ function of prices and individual characteristics
Structural: estimate parameters of utility function choice of bandwidth depends on value of time, urgency, etc. as well as price and characteristics

First look at reduced form, then examine some options for structural estimates

Log Regressions

$$
\begin{aligned}
& \mathrm{u} 128=-2.0 \mathrm{p} 128+.80 \mathrm{p} 96+.25 \mathrm{p} 64-.02 \mathrm{p} 32-.16 \mathrm{p} 16 \\
& \mathrm{u} 96=+1.7 \mathrm{p} 128-3.1 \mathrm{p} 96+.43 \mathrm{p} 64+.19 \mathrm{p} 32+.18 \mathrm{p} 16 \\
& \mathrm{u} 64=+.77 \mathrm{p} 128+1.8 \mathrm{p} 96-2.9 \mathrm{p} 64+.59 \mathrm{p} 32+.21 \mathrm{p} 16 \\
& \mathrm{u} 32=+.81 \mathrm{p} 128-1.0 \mathrm{p} 96+1.0 \mathrm{p} 64-1.4 \mathrm{p} 32+.15 \mathrm{p} 16 \\
& \mathrm{u} 16=+0.2 \mathrm{p} 128-.29 \mathrm{p} 96+.04 \mathrm{p} 64+1.2 \mathrm{p} 32-1.3 \mathrm{p} 16
\end{aligned}
$$

Red = negative own price effect
Light $=$ not statistically significant

Lesson: large negative own price effect, positive cross price effect

How good is the fit?

	R^{2}	
	ISE	no ISE
u128	.95	.11
u96	.93	.25
u64	.92	.18
u32	.95	.14
u16	.90	.17

ISE = "individual specific effect"; interpretation
Conclusion: very good fits!

Structural estimates

Notation
$b=$ bandwidth chosen
$x=$ bits transferred
$t=$ time at bandwidth $b=x / b$
$p(b)=$ price of bandwidth b
Utility
$u(x)-[c+p(b)] t$
c is value of time; varies with circumstances
$f(c)$ is probability distribution of c

Choice model

Let $\left(x, b^{*}\right)$ be choice. Optimization requires:

$$
u(x)-\left[c+p\left(b^{*}\right)\right] \frac{x}{b^{*}} \geq u(x)-[c+p(b)] \frac{x}{b} \quad \text { for all } b
$$

Rearrange to find

$$
\min _{b^{*}<b} \frac{p\left(b^{*}\right) b-p(b) b^{*}}{b^{*}-b} \geq c \geq \max _{b^{*}>b} \frac{p\left(b^{*}\right) b-p(b) b^{*}}{b^{*}-b}
$$

Note that this gives upper and lower bounds on cost of time.

Picture of estimation method

$\operatorname{Plot} K(c)=\left[c+p\left(b_{i}\right)\right]\left(1 / b_{i}\right)$ for $i=1, \ldots, n$
Observe $\left({ }_{C}{ }_{U}^{i}, c^{i}{ }_{L}, f^{i}\right)$ for $i=1, \ldots, n$

Histograms for one user

Distribution of time cost

Can calculate average time cost for each individual using these frequency distributions.
Table shows number of subject with average estimated time cost that falls in indicated range:

Range	1	2	3	4	5	6	7	8	9	10	11	12
Upper bound	39	8	3	4	1	2	2	1	2	0	3	0
Lower bound	63	3	0	0	1	0	0	0	0	0	0	0
Average	47	7	2	3	3	3	1	3	1	1	0	0

Who has high WTP?

Est. Time Cost

Average cost of time

Very low WTP for time ($=1 / 2$ cent per minute)

- very small charges induce large changes in behavior
- lot of low-value traffic out there
- admin/technical have highest WTP

WTP for population as a whole
cLowMean $=0.02$
cUpMean $=0.40$
cLowStd $=0.07$
cUpStd $=1.11$

Parametric fit

Suppose frequencies drawn from prob distribution $p(c, \beta)$
Find distribution that is close to all the frequencies
Closeness $=$ Kullback-Leibler entropy measure, $\Sigma f \log p$

$$
\max _{\beta} \sum_{i=1}^{n} f_{i} \log \int_{c_{L}^{i}}^{c_{U}^{i}} p(x, \beta) d x
$$

Truncated Normal

$$
\begin{aligned}
& \mu=.487, \sigma=.32 \\
& \text { mean }=.52
\end{aligned}
$$

Picture of CDF

$$
\mu=.42 . \sigma=.25
$$ min SSR

Entire Population

What about population as a whole?
cLowMean $=0.02$, cUpMean $=0.40$
cLowStd $=0.07, \mathrm{cUpStd}=1.11$
Estimated parameters: $\mu=-.16, \sigma=.64$, mean time cost $=.18$

Why such a low WTP?

Possible explanations

1. Our population is not representative can look at demographics, e.g., income effects
2. We only get lower bound on WTP for 128 kbs but this is only about $1 / 6$ of use
3. We can't control QoS outside of Berkeley network high bandwidth isn't worth much if congestion is elsewhere
4. We can only measure value of existing applications

Volume experiments

Two bandwidths
8 Kbs for free
128 Kbs for money
Price volume downloaded
prices range from 1 to 20 cents per megabyte monthly expenditures similar in bandwidth and volume experiments

Scatterplot

Log Regressions

no ISE: $u 128=-0.29$ p128

$$
\begin{aligned}
& \mathrm{R}^{2}=0.02 \\
& \mathrm{R}^{2}=1.00
\end{aligned}
$$

Interesting finding: amount transmitted is not sensitive to price entire effect is individual-specific effect

Why? Probably choice offered is too extreme...

What's next?

Current experiment: pay flat fee on Sunday to opt out of metered pricing
Move to ADSL or cable modem?
What are you interested in?

