INFERNO.

El mezzo del a amin di noftra uita

n mi ritrouai per una felua ofoura; che la diritta uid era fmarrita:
E t quanto a dir qual era, è wofa dura
$-\pi$ rlu, cluci...tin..... ci...

Natural Language Processing

Info 159/259
Lecture 20: Machine Translation (April 6, 2023)
David Bamman, UC Berkeley

Machine Translation

When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.

Machine Translation

Task	X	Y
Sentiment analysis	I hate this movie!	negative
POS tagging	I hate this movie!	PRP VB DT NN .
Parsing	I hate this movie!	[tree]
MT	Lasciate ogni speranza, voi ch'entrate	Abandon all hope, you who enter!
Conversational agent	How are you?	I'm great!

Google

Lasciate ogni speranza, voi ch'entrate translate

All Images News Videos Maps More Settings Tools

About 9,230 results (0.43 seconds)

Italian-detected
(1) \leftrightarrows

English •
「 (1)

Lasciate ogni speranza, voi ch'entrate

Abandon all hope, ye who enter here
^ There are many English translations of this famous line. Some examples include

- All hope abandon, ye who enter here - Henry Francis Cary (1805-1814)
- All hope abandon, ye who enter in! - Henry Wadsworth Longfellow (1882)
- Leave every hope, ye who enter! - Charles Eliot Norton (1891)
- Leave all hope, ye that enter - Carlyle Okey-Wicksteed (1932)
- Lay down all hope, you that go in by me. - Dorothy L. Sayers (1949)
- Abandon all hope, ye who enter here - John Ciardi (1954)
- Abandon every hope, you who enter. - Charles S. Singleton (1970)
- No room for hope, when you enter this place - C. H. Sisson (1980)
- Abandon every hope, who enter here. - Allen Mandelbaum (1982)
- Abandon all hope, you who enter here. - Robert Pinsky (1993); Robert Hollander (2000)
- Abandon every hope, all you who enter - Mark Musa (1995)
- Abandon every hope, you who enter. - Robert M. Durling (1996)

Verbatim, the line translates as "Leave (lasciate) every (ogne) hope (speranza), ye (voi) that (ch) enter (intrate)."

Data

- Modern machine translation systems are learned from parallel texts: pairs of documents in two languages that have been aligned at the sentence level.

Je déclare reprise la session du Parlement européen qui avait été interrompue le vendredi 17 décembre dernier et je vous renouvelle tous mes vux en espérant que vous avez passé de bonnes vacances.

I declare resumed the session of the European Parliament adjourned on Friday 17 December 1999, and I would like once again to wish you a happy new year in the hope that you enjoyed a pleasant festive period.

Comme vous avez pu le constater, le grand "bogue de l'an 2000" ne s'est pas produit. En revanche, les citoyens d'un certain nombre de nos pays ont été victimes de catastrophes naturelles qui ont vraiment été terribles.

Although, as you will have seen, the dreaded 'millennium bug' failed to materialise, still the people in a number of countries suffered a series of natural disasters that truly were dreadful.

European Parliament Proceedings Parallel Corpus 1996-2011
 http://www.statmt.org/europarl/

Data

- Europarl (proceedings of European parliament, 50M words/language) http://www.statmt.org/europarl/
- UN Corpus (United Nations documents, six languages, 300M words/ langauge)
http://www.euromatrixplus.net/multi-un/
- Common crawl (Web documents, long tail of language pairs)

Evaluation

- Tell me Muse, of the man of many ways
- Sing to me of the man, Muse, the man of twists and turns
- Tell me about a complicated man

Evaluation

- BLEU (Papineni et al. 2002): what fraction of \{1-4\}-grams in the system translation appear in the reference translations?

$$
p_{n}=\frac{\text { Number of ngram tokens in system and reference translations }}{\text { Number of ngram tokens in system translation }}
$$

$$
\mathbf{B L E U}=B P \times \exp \frac{1}{N} \sum_{n=1}^{N} \log p_{n}
$$

Hypothesis translation

Appeared calm when he was taken to the American plane, which will to Miami, Florida.
Appeared
calm
when
he
was
taken
to
the

American

Reference translations

Orejuela appeared sedate as he was led to the American plane which will take him to Miami, Florida.

Orejuela appeared calm while being escorted to the plane that would take him to Miami, Florida.

Orejuela appeared calm as he was being led to the American plane that was to carry him to Miami in Florida.

Orejuela seemed quite calm as he was being led to the American plane that would take him to Miami in Florida.

$$
p_{1}=\frac{15}{18}=0.833
$$

Ngrams appearing >1 time in the hypothesis can match up to the max number of times they appear in a single reference - e.g., two commas in hypothesis but one max in any single reference.

Hypothesis translation

Appeared calm when he was taken to the American plane, which will to Miami, Florida.

```
Appeared calm
calm when
when he
he was
was taken
taken to
to the
the American
American plane
```

Orejuela appeared sedate as he was led to the American plane which will take him to Miami, Florida.

Orejuela appeared calm while being escorted to the plane that would take him to Miami, Florida.

Orejuela appeared calm as he was being led to the American plane that was to carry him to Miami in Florida.

Orejuela seemed quite calm as he was being led to the American plane that would take him to Miami in Florida.

$$
p_{2}=\frac{10}{17}=0.588
$$

$$
\mathbf{B L E U}=B P \times \exp \frac{1}{N} \sum_{n=1}^{N} \log p_{n}
$$

$p_{n}=\frac{\text { Number of ngram tokens in system and reference translations }}{\text { Number of ngram tokens in system translation }}$

- We could optimize the score by minimizing the denominator (the number of ngrams generated)
- Brevity penalty:

$$
\mathrm{BP}=\left\{\begin{array}{ccc}
1 & \text { if } & c>r \\
e^{1-r / c} & \text { if } & c \leq r
\end{array}\right.
$$

- $c=$ length of hypothesis translation
- $r=$ length of the reference translation whose length is the closest to c

Statistical MT

Noisy Channel

	X	Y
ASR	speech signal	transcription
MT	target text	source text
OCR	pixel densities	transcription
$P(Y \mid X) \propto \underbrace{P(X \mid Y)}_{\text {channel model }}$	$\underbrace{P(Y)}_{\text {source model }}$	

Noisy Channel

- If we're translating from English (X) into French (Y) we assume some true French sentence Y that was "corrupted" into English version X.

Noisy Channel

This the
translation model
This is just a language model for the target
language

$$
P(Y \mid X) \propto \underbrace{P(X \mid Y)}_{\text {channel model }} \underbrace{P(Y)}_{\text {source model }}
$$

Statistical MT

The statistical revolution in machine translation (1990) started by exploiting the structure of parallel sentences to learn the translation model.

Lasciate ogni speranza, voi ch'entrate
Abandon all hope, you who enter!

Statistical MT

Lasciate ogni speranza, voi ch'entrate

Abandon all hope, you who enter!
mi lasciate in pace

Leave me in peace

Lasciate i monti

Leave the mountains

Statistical MT

Lasciate ogni speranza, voi ch'entrate

Abandon all hope, you who enter!

Lasciate i monti

Leave the mountains

Statistical MT

Italian	English	$\mathrm{P}($ English \| Italian)
lasciate	leave	0.67
lasciate	abandon	0.33
Translation table		
Italian	English	$\mathrm{P}($ English \| Italian)
Voi ch'entrate	you who enter	0.91
Voi ch'entrate	you who are entering	0.09
	Phrase translation table	

IBM Alignment models

If we had explicit word alignments we could estimate translation tables directly from them.
mi lasciate in pace

Leave me in peace

Lasciate i monti

Leave the mountains

But we don't have word alignments - just sentence alignments!

IBM Alignment models

Unsupervised models for aligning words and phrases in parallel sentences.

Lasciate i monti

Leave the mountains

IBM Alignment models

Model 1	Independent word translation (order doesn't matter)
Model 2	Word translation + distance between source and target position
Model 3	Word translation + fertility (how many target words a source word can align to)
Model 4	Word translation + relative ordering among target words of same source
Model 5	(Fixes deficiency of model 4)
HMM (Vogel et al. 1996)	Word translation plus relative ordering

Neural MT

- Encoder-decoder
- Encoder-decoder + attention
- Transformer (Vaswani et al. 2018)

Encoder-decoder framework

Condition on word generated in translation

Training

- As in other RNNs, we can train by minimizing the loss between what we predict at each time step and the truth.

Training

ruth

I'm	you	are	the	\ldots
1	0	0	0	0
I'm	you	are	the	\ldots
0.03	0.05	0.02	0.01	0.009

happy	great	bad	ok	\ldots
1	0	0	0	0

Encoder-decoder

- Sutskever et al. (2014) found better performance when the encoder reads the sentence in backwards, from right to left (increase in BLEU from 25.9 to 30.6)

Encoder-decoder

Encoder-decoder with attention

The decoder state depends just the previous state, the previous output, and some context

$$
s_{i}=f\left(s_{i-1}, y_{i-1}, c_{i}\right)
$$

$$
\begin{array}{|c|}
\hline 0.1 \\
\hline 0.20 \\
\hline 0.31 \\
\hline-1.4 \\
\hline 0.8 \\
\hline
\end{array}
$$

$$
\begin{array}{|c|}
\hline 0.8 \\
\hline-0.13 \\
\hline-0.78 \\
\hline 1.78 \\
\hline 3.2 \\
\hline
\end{array}
$$

Encoder-decoder with attention

$$
c=h_{1} a_{1}+h_{2} a_{2}+h_{3} a_{3}
$$

$$
s_{i}=f\left(s_{i-1}, y_{i-1}, c_{i}\right)
$$

Encoder-decoder with attention

$$
c=h_{1} a_{1}+h_{2} a_{2}+h_{3} a_{3}
$$

$$
s_{i}=f\left(s_{i-1}, y_{i-1}, c_{i}\right)
$$

Encoder-decoder with attention

$$
c=h_{1} a_{1}+h_{2} a_{2}+h_{3} a_{3}
$$

Encoder-decoder with attention

- Each time step in the decoder has its own weighted context vector

$v \in \mathscr{R}^{H}$

With document classification, we parameterized attention with a single vector v to be learned. Attention in an encoder-decoder network is a little different because we're comparing a pair of vectors.

Encoder-decoder with attention

$$
c=h_{1} a_{1}+h_{2} a_{2}+h_{3} a_{3}
$$

$$
r_{1, j}=F F N N\left(h_{1}, s_{j-1}\right)
$$

Feed-forward neural network

The feed-forward network here just takes the two vectors as input as outputs a single scalar. The parameters are all learned using backprop (just like every other parameter).

Encoder-decoder with attention

Encoder-decoder with attention

Attention

- For text classification, attention helps decide which words in the text are important for the label.
- For MT, attention changes with each word being generated during decoding. Each subsequent word pays attention to different parts of the input.

Better performance on long sentences

Bahdanau et al. (2016), "Neural Machine Translation by Jointly Learning to Align and Translate"

Bahdanau et al. (2016), "Neural Machine Translation by Jointly Learning to Align and Translate"

- Transformer network (Vaswani et al. 2017).

Self-attention

- Multiple layers of representations for an input sequence; each layer attends over the representations in the previous layer.

Self-attention

weighted sum

$\begin{array}{lllll}0.7 & 3.1 & 8.7 & -2.3\end{array}$
$\begin{array}{lllll}2.7 & 3.1 & -1.4 & 0.3\end{array}$
$\begin{array}{lllll}4.1 & 0.2 & -1.4 & 0.1\end{array}$

Layer 1

Embedding layer

Self-attention

Self-attention

Self-attention

Self-attention

Self-attention

$\begin{array}{lllll}2.7 & 3.1 & -1.4 & 0.3\end{array}$
$\begin{array}{lllll}4.1 & 0.2 & -1.4 & 0.1\end{array}$
Embedding layer

Self-attention

- In the decoder, self-attention can only attend over words
weighted sum

$\begin{array}{llll}0.7 & 3.1 & 8.7 & -2.3\end{array}$
to the left of the position (since the right ones haven't been generated yet).

Self-attention

weighted sum

- In the decoder, self-attention can only attend over words to the left of the position (since the right ones haven't been generated yet).

Self-attention

- In the decoder, self-attention can only attend over words to the left of the position (since the right ones haven't been generated yet).

Self-attention

- In the decoder, self-attention can only attend over words to the left of the position (since the right ones haven't been generated yet).

Self-attention

- In the decoder, self-attention can only attend over words to the left of the position (since the right ones haven't been generated yet).

Self-attention

- In the decoder, self-attention can only attend over words to the left of the position (since the right ones haven't been generated yet).

Encoder-decoder cross-attention

Encoder-decoder cross-attention

- Each layer in the decoder attends over the encoder output
(as usual).

$\begin{array}{llll}-0.5 & 0.6 & 0.2 & 5.3\end{array}$

$\begin{array}{llll}0.6 & 3.0 & 1.2 & 4.2\end{array}$
$\begin{array}{llll}0.3 & 6.2 & 6.0 & 2.3\end{array}$

SLP3 fig. 10.6; https://web.stanford.edu/~jurafsky/slp3/13.pdf

The	The
Law	
will	
nerfect	
be	

- Multiple heads capture different structure.

Model	BLEU	
	EN-DE	EN-FR
ByteNet [18]	23.75	
Deep-Att + PosUnk [39]	24.6	39.2
GNMT + RL [38]	25.16	40.46
ConvS2S [9]	26.03	40.56
MoE [32]		40.4
Deep-Att + PosUnk Ensemble [39]	26.30	41.16
GNMT + RL Ensemble [38]	26.36	$\mathbf{4 1 . 2 9}$
ConvS2S Ensemble [9]	27.3	38.1
Transformer (base model)	$\mathbf{2 8 . 4}$	$\mathbf{4 1 . 8}$
Transformer (big)		

