

Applied Natural Language Processing

Info 256

Lecture 9: Testing (Sept. 25, 2023)

David Bamman, UC Berkeley

Significance in NLP

- You develop a new method for text classification; is it better than what comes before?
- You're developing a new model; should you include feature X? (when there is a cost to including it)
- You're developing a new model; does feature X reliably predict outcome Y?

Evaluation

 A critical part of development new algorithms and methods and demonstrating that they work

Metrics

- Evaluations presuppose that you have some metric to evaluate the fitness of a model.
 - Text classification: accuracy, precision, recall, F1
 - Phrase-structure parsing: PARSEVAL (bracketing overlap)
 - Dependency parsing: Labeled/unlabeled attachment score
 - Machine translation: BLEU, METEOR
 - Summarization: ROUGE
 - Language model: perplexity

Metrics

- Downstream tasks that use NLP to predict the natural world also have metrics:
 - Predicting presidential approval rates from tweets
 - Predicting the type of job applicants from a job description
 - Conversational agent

Classification

A mapping h from input data x (drawn from instance space x) to a label (or labels) y from some enumerable output space y

```
\mathcal{X} = set of all documents

\mathcal{Y} = {english, mandarin, greek, ...}
```

x = a single document
y = ancient greek

Multiclass confusion matrix

Predicted (ŷ)

	Dem	Repub	Indep
Dem	100	2	15
Repub	0	104	30
Indep	30	40	70

True (y)

Accuracy

$$\frac{1}{N} \sum_{i=1}^{N} I[\hat{y}_i = y_i]$$

I[x] $\begin{cases} 1 & \text{if } x \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

	-11 - 1		/ ^ \	۱
Pred	וחור	\Box	/ / /	١
115	ж	\Box	١v	ı
	J U		\ J \	,

	Dem	Repub	Indep
Dem	100	2	15
Repub	0	104	30
Indep	30	40	70

Precision

Precision(Dem) =

$$\frac{\sum_{i=1}^{N} I(y_i = \hat{y}_i = \mathsf{Dem})}{\sum_{i=1}^{N} I(\hat{y}_i = \mathsf{Dem})}$$

. . . .

True (y)

Precision: proportion of predicted class that are actually that class.

Predicted (ŷ)

Repub

Indep

Dem	100	2	15
Repub	0	104	30
Indep	30	40	70

Dem

Recall

$$\frac{\sum_{i=1}^{N} I(y_i = \hat{y}_i = \mathsf{Dem})}{\sum_{i=1}^{N} I(y_i = \mathsf{Dem})}$$

Recall: proportion of true class that are predicted to be that

class.

True (v)

Predicted (ŷ)

Repub

Indep

Dem	100	2	15
Repub	0	104	30
Indep	30	40	70

Dem

F score

$$F = \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

Ablation test

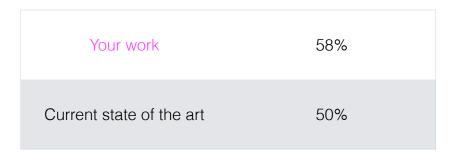
- To test how important individual features are (or components of a model), conduct an ablation test
 - Train the full model with all features included, conduct evaluation.
 - Remove feature, train reduced model, conduct evaluation.

Ablation test

	Dev.	Test
Our tagger, all features	88.67	89.37
independent ablations:		
-DISTSIM	87.88	88.31 (-1.06)
-TAGDICT	88.28	88.31 (-1.06)
-TWOrth	87.51	88.37 (-1.00)
$-\mathbf{M}$ ЕТАРН	88.18	88.95 (-0.42)
-NAMES	88.66	89.39 (+0.02)
Our tagger, base features	82.72	83.38
Stanford tagger	85.56	85.85
Annotator agreement	92	2.2

Table 2: Tagging accuracies on development and test data, including ablation experiments. Features are ordered by importance: test accuracy decrease due to ablation (final column).

Significance



• If we observe difference in performance, what's the cause? Is it because one system is better than another, or is it a function of randomness in the data? If we had tested it on other data, would we get the same result?

Hypotheses

hypothesis

The average income in two sub-populations is different

Web design A leads to higher CTR than web design B

Self-reported location on Twitter is predictive of political preference

Your system X is better than state-of-the-art system Y

Null hypothesis

A claim, assumed to be true, that we'd like to test (because we think it's wrong)

hypothesis	H ₀
The average income in two sub- populations is different	The incomes are the same
Web design A leads to higher CTR than web design B	The CTR are the same
Self-reported location on Twitter is predictive of political preference	Location has no relationship with political preference
Your system X is better than state-of-the-art system Y	There is no difference in the two systems.

Hypothesis testing

• If the null hypothesis were true, how likely is it that you'd see the data you see?

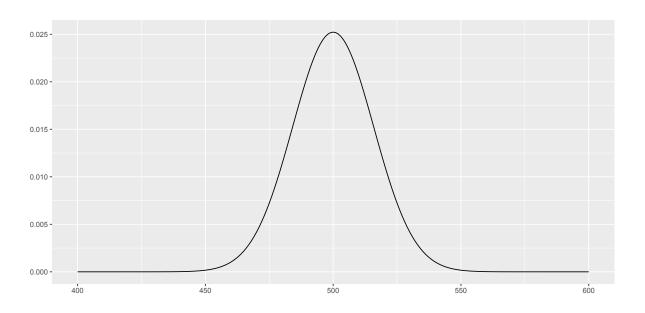
Hypothesis testing

• Hypothesis testing measures our confidence in what we can say about a null from a sample.

Hypothesis testing

- Current state of the art = 50%; your model = 58%. Both evaluated on the same test set of 1000 data points.
- Null hypothesis = there is no difference, so we would expect your model to get 500 of the 1000 data points right.
- If we make parametric assumptions, we can model this with a Binomial distribution (number of successes in n trials)

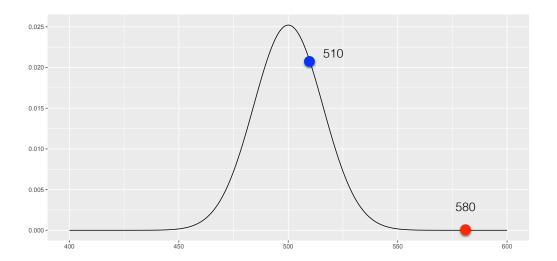
Example



Binomial probability distribution for number of correct predictions in n=1000 with p=0.5

Example

At what point is a sample statistic unusual enough to reject the null hypothesis?



Example

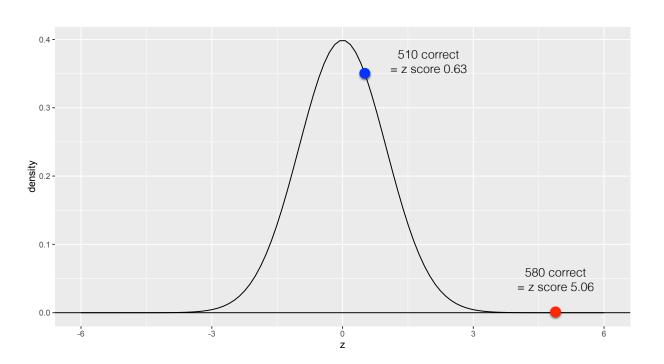
- The form we assume for the null hypothesis lets us quantify that level of surprise.
- We can do this for many parametric forms that allows us to measure P(X ≤ x) for some sample of size n; for large n, we can often make a normal approximation.

Zscore

$$Z = \frac{X - \mu}{\sigma / \sqrt{r}}$$

For Normal distributions, transform into standard normal (mean = 0, standard deviation =1)

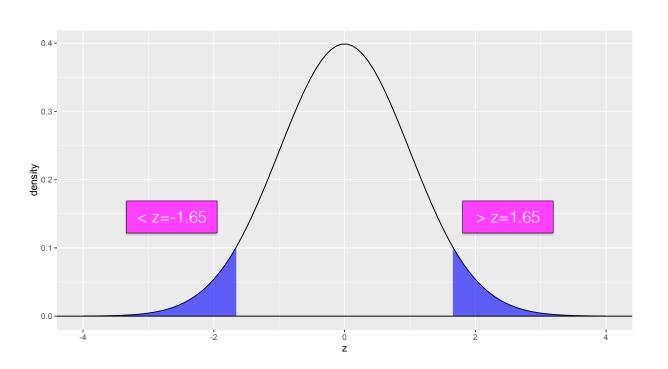
Z score



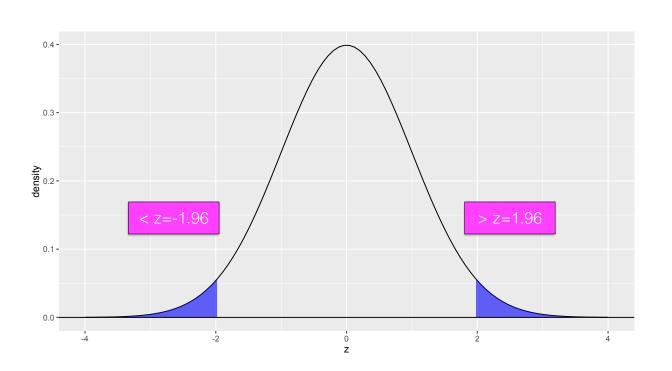
Tests

• We will define "unusual" to equal the most extreme areas in the tails

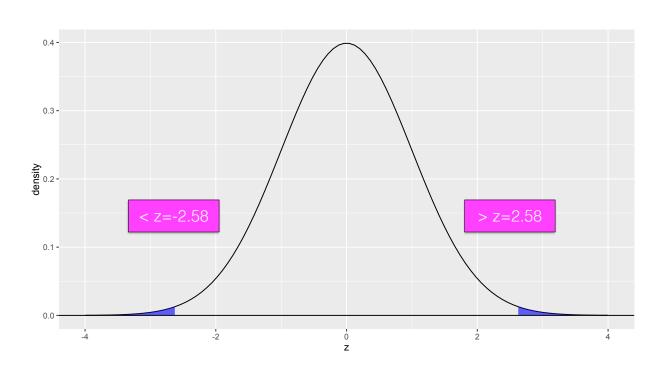
least likely 10%



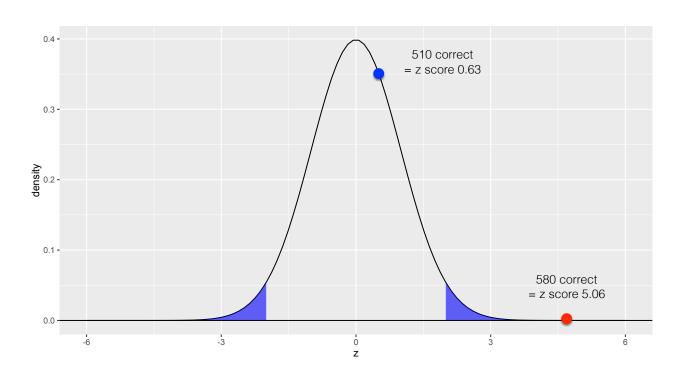
least likely 5%



least likely 1%



Tests

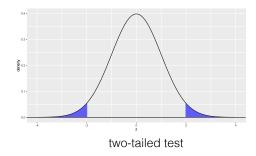


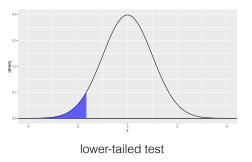
Tests

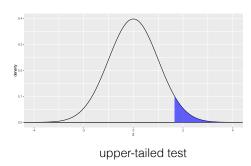
- Decide on the level of significance α. {0.05, 0.01}
- \bullet Testing is evaluating whether the sample statistic falls in the rejection region defined by α

- Two-tailed tests measured whether the observed statistic is different (in either direction)
- One-tailed tests measure difference in a specific direction
- All differ in where the rejection region is located; $\alpha = 0.05$ for all.

Tails







p values

A p value is the probability of observing a statistic at least as extreme as the one we did if the null hypothesis were true.

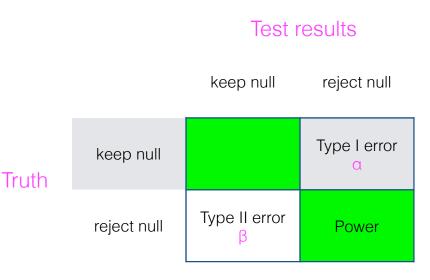
$$p\text{-value}(z) = 2 \times P(Z \le -|z|)$$

$$p\text{-value}(z) = P(Z \le z)$$

$$p\text{-value}(z) = 1 - P(Z \le z)$$

Errors

- Type I error: we reject the null hypothesis but we shouldn't have.
- Type II error: we don't reject the null, but we should have.



3	"war" is predictive of presidential approval rating
4	"car" is predictive of presidential approval rating
5	"the" is predictive of presidential approval rating
6	"star" is predictive of presidential approval rating
7	"book" is predictive of presidential approval rating
8	"still" is predictive of presidential approval rating
9	"glass" is predictive of presidential approval rating

"bottle" is predictive of presidential approval rating

"jobs" is predictive of presidential approval rating

"job" is predictive of presidential approval rating

2

. . .

1,000

Errors

- For any significance level a and n hypothesis tests, we can expect axn type I errors.
- α=0.01, n=1000 = 10 "significant" results simply by chance

Multiple hypothesis corrections

 Bonferroni correction: for family-wise significance level ao with n hypothesis tests:

$$a \leftarrow \frac{a_0}{n}$$

- [Very strict; controls the probability of at least one type I error.]
- False discovery rate

Confidence intervals

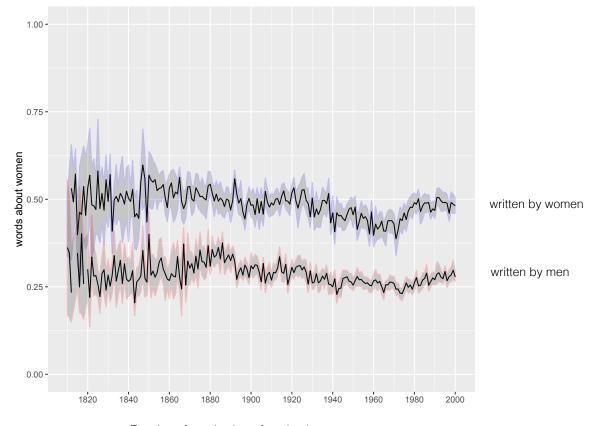
- Even in the absence of specific test, we want to quantify our uncertainty about any metric.
- Confidence intervals specify a range that is likely to contain the (unobserved) population value from a measurement in a sample.

Confidence intervals

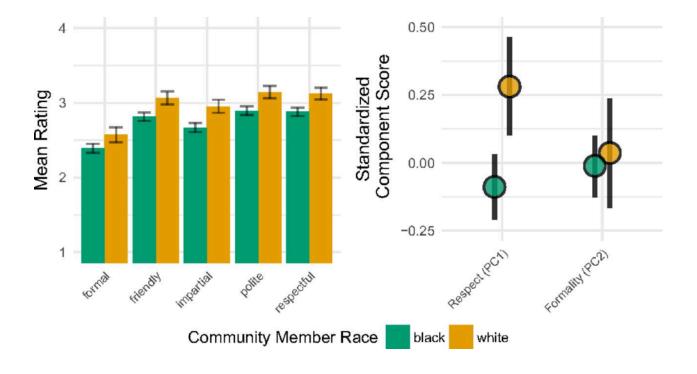
Binomial confidence intervals (again using Normal approximation):

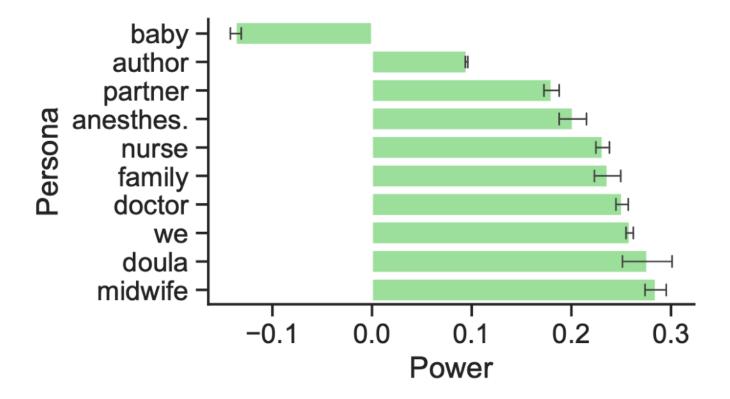
- p = rate of success (e.g., for binary classification, the accuracy).
- n = the sample size (e.g., number of data points in test set).
- z_{α} = the critical value at significance level α .
 - 95% confidence interval: $\alpha = 0.05$; $z_{\alpha} = 1.96$
 - 99% confidence interval: $\alpha = 0.01$; $z_{\alpha} = 2.58$

$$p \pm z_{\alpha} \sqrt{\frac{p(1-p)}{n}}$$



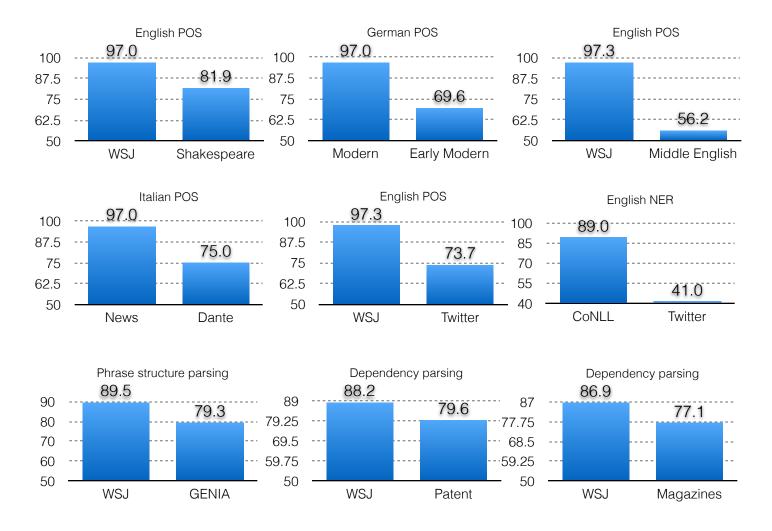
Fraction of words about female characters





Issues

- Evaluation performance may not hold across domains (e.g., WSJ
 →literary texts)
- Covariates may explain performance (MT/parsing, sentences up to length n)
- Multiple metrics may offer competing results



Takeaways

- At a minimum, always evaluate a method on the domain you're using it on
- When comparing the performance of models, quantify your uncertainty with significant tests/confidence bounds
- Use ablation tests to identify the impact that a feature class has on performance.

Takeaways

- Whenever you calculate a metric from some data, report confidence intervals around it!
- → Accuracy and other measures of validity; any inferred statistics from a sample you're using to make arguments about — anything where there may be variability in that measures as a result of the sample of data you have.

Activity

7.tests/ParametricTest

 Explore a simple hypothesis test checking whether the accuracy of a trained model for classification in your last homework is meaningfully different from a majority class baseline