

Applied Natural Language Processing

Info 256
Lecture 5: Bias in word embeddings (Sept. 11, 2023)
David Bamman, UC Berkeley

Analogical inference

- Mikolov et al. 2013 show that vector representations have some potential for analogical reasoning through vector arithmetic.

$$
\begin{aligned}
& \text { apple - apples } \approx \text { car - cars } \\
& \text { king - man }+ \text { woman } \approx \text { queen }
\end{aligned}
$$

Home	News	Journals	Topics	Careers	
Science	Science Advances	Science Immunology	Science Robotics	Science Signaling	Science Translational Medicine

SHARE
REPORT

0
Semantics derived automatically from language corpora contain human-like biases

Aylin Caliskan ${ }^{1, *}$, Joanna J. Bryson ${ }^{1,22^{*}}$, Arvind Narayanan ${ }^{1, *}$

+ See all authors and affiliations

Science 14 Apr 2017
Vol. 356, Issue 6334, pp. 183-186
DOI: $10.1126 /$ science.aal4230

Article

Bias

- Allocational harms: automated systems allocate resources unfairly to different groups (access to housing, credit, parole).
- Representational harms: automated systems represent one group less favorably than another (including demeaning them or erasing their existence).

Representations

- Pleasant: caress, freedom, health, love, peace, cheer, friend, heaven, loyal, pleasure, diamond, gentle, honest, lucky, rainbow, diploma, gift, honor, miracle, sunrise, family, happy, laughter, paradise, vacation.
- Unpleasant: abuse, crash, filth, murder, sickness, accident, death, grief, poison, stink, assault, disaster, hatred, pollute, tragedy, bomb, divorce, jail, poverty, ugly, cancer, evil, kill, rotten, vomit.
- Embeddings for African-American first names are closer to "unpleasant" words than European-American names (Caliskan et al. 2017)

- Sentiment analysis over sentences containing African-American first names are more negative than identical sentences with EuropeanAmerican names.
- Toxicity detection systems score text with African-American English as more offensive
- Implicit negative perception of AAE \rightarrow more AAE tweets are removed \rightarrow users change language practices

Bias

$$
x^{\top} b \begin{aligned}
& \\
& \\
& x \cdot b
\end{aligned}
$$

$$
\begin{aligned}
& x=[3,1,2] \\
& y=[0,5,2]
\end{aligned}
$$

$$
x \cdot y=
$$

$$
3 \times 0+1 \times 5+2 \times 2
$$

$$
=9
$$

Cosine Similarity

$$
\cos (x, y)=\frac{\sum_{i=1}^{F} x_{i} y_{i}}{\sqrt{\sum_{i=1}^{F} x_{i}^{2}} \sqrt{\sum_{i=1}^{F} y_{i}^{2}}}
$$

Cosine similarity

$$
\cos (x, y)=\frac{\operatorname{dot}(x, y)}{\sqrt{\operatorname{dot}(x, x)} \times \sqrt{\operatorname{dot}(y, y)}}
$$

Cosine similarity

$$
\cos (x, y)=\frac{\operatorname{dot}(x, y)}{\sqrt{\operatorname{dot}(x, x)} \times \sqrt{\operatorname{dot}(y, y)}}
$$

This part can be done ahead of time by normalizing all vectors:

$$
v=\frac{v}{\sqrt{\operatorname{dot}(v, v)}}
$$

If all vectors have been normalized in this way, cosine similarity is just the dot product:
$\cos (x, y)=\operatorname{dot}(x, y)$

Orthogonal projection

Assume all the vectors have been normalized to unit length

$$
v=\frac{v}{\sqrt{\operatorname{dot}(v, v)}}
$$

$$
x_{b}=\operatorname{dot}(x, b) b
$$

$x_{b}=\left(x^{\top} b\right) b$

nurse
(-0.5, 0.4)

$(-1,0)$

$$
w=w_{b}+w_{b^{\perp}}
$$

$$
\left[\begin{array}{c}
-0.5 \\
0.4
\end{array}\right]=\left[\begin{array}{c}
-0.5 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
0.4
\end{array}\right]
$$

gender everything
part else

Debiasing

nurse
$(-0.5,0.4)$

Bias

- The last slides illustrate this with a simple 2D subspace (where gender is effectively a 1D line).

$x_{b}=\left(x^{\top} b\right) b$

- But the same principle (and procedure applies to any dimensionality (e.g., word embeddings of 100 dimensions).
debiasing by subtracting gender projection

$$
x_{d}=x-x_{b}
$$

What's the gender subspace?

- Caliskan et al. 2018 construct this by first creating defining sets of gendered terms, e.g.
- $\mathrm{D}_{1}=\{m a n$, woman $\}$
- $D_{2}=\{$ he, she $\}$
- Performing SVD over a covariance matrix within over all terms in the defining sets (mean-normalized)
- And defining a gender subspace to be the first row of the resulting SVD.

Gender subspace

Vargas and Cotterell (2020) show that this is equivalent to PCA over the following matrix \rightarrow

```
man-mean(man, woman)
woman-mean(man, woman)
he-mean(he, she)
she-mean(he, she)
```

If each embedding is 100 dimensions, this matrix is [4×100] in size.

The gender subspace is then the first principle component (a 100dimensional vector in this scenario).

Principal Component Analysis

- Method for transforming a set of original (possible correlated) observations into new (uncorrelated) values.

- Original values: latitude and longitude (very strong correlation for these data points)
- Transformed values: street address and distance from street (no correlation)

Main idea

- Each principal component ($1 \ldots$ F) is the axis that exhibits them most variance in the data and is uncorrelated (orthogonal) with earlier PCs
- The first PC explains the most variance; the second PC explains the most remaining variance, etc.

Gender subspace

Vargas and Cotterell (2020) show that this is equivalent to PCA over the following matrix \rightarrow

```
man-mean(man, woman)
woman-mean(man, woman)
he-mean(he, she)
she-mean(he, she)
```

If each embedding is 100 dimensions, this matrix is [4×100] in size.

The gender subspace is then the first principle component (a 100dimensional vector in this scenario).

The mean of "man" and "woman" captures information that is common to both terms/embeddings (e.g. being people, animate, etc.). The difference is what's left over to be explained.

SemAxis

- Define a set of terms that comprise the endpoints of an axis of interest and average them up to form axis endpoint vectors.
$S^{-}=\left\{v_{1}^{-}, \ldots, v_{n}^{-}\right\}$

$$
S^{+}=\left\{v_{1}^{+}, \ldots, v_{m}^{+}\right\}
$$

\{man, he, mr.\}
\{woman, she, miss, mrs.\}
$V^{-}=\frac{1}{n} \sum_{1}^{N} v_{i}^{-}$

$$
V^{+}=\frac{1}{M} \sum_{1}^{M} v_{i}^{+}
$$

SemAxis

- The axis vector is then the difference between the two endpoint vectors
\{man, he, mr.\}

$$
V^{-}=\frac{1}{n} \sum_{1}^{N} v_{i}^{-}
$$

\{woman, she, miss, mrs.\}

$$
V^{+}=\frac{1}{M} \sum_{1}^{M} v_{i}^{+}
$$

SemAxis

- For any vector, we can find its position along this axis by taking the cosine similarity with it (or dot product if all the vectors are normalized to unit length)

$$
\text { Semaxis score }=\cos \left(\text { football, } V_{\text {axis }}\right)
$$

$x_{b}=\left(x^{\top} b\right) b$

Interrogating "bias"

- Kozlowski et al. (2019), "The Geometry of Culture: Analyzing the Meanings of Class through Word Embeddings," American Sociological Review.
- An et al. 2018, "SemAxis: A Lightweight Framework to Characterize Domain-Specific Word Semantics Beyond Sentiment"

Kozlowski et al. (2019); conceptual diagram (not real data)

Table D2. Word Pairs Used to Reconstruct 20 Semantic Differential Dimensions from Jenkins and Colleagues (1958) for Historical Survey Validation

soft-hard	foolish-wise	unimportant-important supple-tough	fast-slow delicate-dense
irrational-rational	consequential-	quick-lagging	
pliable-rigid	stupid-thoughtful	secondary-principal	rapid-unhurried
speedy-sluggish			

Activity

- SemAxis_TODO: Implement the SemAxis method to define a conceptual axis using word embeddings and situate any word along that axis.
- Brainstorm other axes

