

Applied Natural Language Processing

Info 256 Lecture 22: Syntax (Nov 8, 2023)

David Bamman, UC Berkeley

Syntax

 With syntax, we're moving from labels for discrete items — documents (sentiment analysis), tokens (POS tagging, NER) — to the structure between items.

I shot an elephant in my pajamas

I shot an elephant in my pajamas

Why is POS important?

- POS tags are indicative of syntax
- POS = cheap multiword expressions [(JJ|NN)+ NN]
- POS tags are indicative of pronunciation ("I contest the ticket" vs "I won the contest"

• Foundation for semantic analysis (on many levels of representation: semantic roles, compositional semantics, frame semantics)

• Strong representation for discourse analysis (e.g., coreference resolution)

Bill VBD Jon; he was having a good day.

 Many factors contribute to pronominal coreference (including the specific verb above), but syntactic subjects > objects > objects of prepositions are more likely to be antecedents

Linguistic typology; relative positions of subjects (S), objects (O) and verbs (V)

SVO	English, Mandarin	I grabbed the chair
SOV	Latin, Japanese	I the chair grabbed
VSO	Arabic, Hawaiian	Grabbed I the chair
OSV	Yoda	Patience you must have

Sentiment analysis

"Unfortunately I already had this exact picture tattooed on my chest, but this shirt is very useful in colder weather." [overlook1977]

Question answering

What did Barack Obama teach?

Barack Hussein Obama II (born August 4, 1961) is the 44th and current President of the United States, and the first African American to hold the office. Born in Honolulu, Hawaii, Obama is a graduate of Columbia University and Harvard Law School, where he served as president of the *Harvard Law Review*. He was a community organizer in Chicago before earning his law degree. He worked as a civil rights attorney and taught constitutional law at the University of Chicago Law School between 1992 and 2004.

 Syntax is fundamentally about the hierarchical structure of language and (in some theories) which sentences are grammatical in a language

words \rightarrow phrases \rightarrow clauses \rightarrow sentences

Formalisms

Phrase structure grammar (Chomsky 1957) Dependency grammar (Mel'čuk 1988; Tesnière 1959; Pāṇini)

Dependency syntax

- Sgall, Dependency-based formal description of language (1994)
- Mel'čuk, Dependency Syntax: Theory and Practice (1988)
- Tesnière, Éléments de syntaxe structurale (1959)
- Medieval theories of grammar (Covington 1984)
- Pānini grammar of Sanskrit (ca. 5th-century BCE)

Dependency syntax

"Sentence diagramming"

Dependency syntax

• Syntactic structure = asymmetric, binary relations between words.

Coordination

Case marking prepositions

Nivre 2005

Trees

- A dependency structure is a directed graph G = (V,A) consisting of a set of vertices V and arcs A between them. Typically constrained to form a tree:
 - Single root vertex with no incoming arcs
 - Every vertex has exactly one incoming arc except root (single head constraint)
 - There is a unique path from the root to each vertex in V (acyclic constraint)

Trees

- Unlike phrase-structure trees, dependency trees aren't tied to the linear order of the words in a sentence.
- Adding a constraint derived from the linear order of words in a sentence allows for more efficient parsing algorithms.

Word order

• Dependency relations belong to the structural order of a sentence, not the linear order.

• This is different from a phrasestructure tree, where the syntax is constrained by the linear order of the sentence (a different linear order yields a different parse tree).

Projectivity

• An arc between a head and dependent is projective if there is a path from the head to every word between the head and dependent.

Dependencies vs constituents

- Dependency links are closer to semantic relationships; no need to infer the relationships from the structure of a tree
- A dependency tree contains one edge for each word, no intermediate hidden structures that also need to be learned for parsing.
- Easier to represent languages with free word order.

Dependency grammar

Captures binary relations between words

- nsubj(NBC, suspended)
- obj(Williams, suspended)

Data

 NELL SVO triples (604 million nsubj+dobj relations from 230B words on the web

police	found	five .030 bullets	1
police	found	seven dead rebels	3
police	found	two hidden cameras	2
police	found	wanders lover	1
police	found	211 pounds	4
police	found	Marcia	3
police	found	bank draft	1
police	found	diskette	2
police	found	five marijuana plants	3
police	found	items used	1
police	found	judge	5

Dependency-Based Word Embeddings

Levy & Goldberg, ACL 2014

http://irsrv2.cs.biu.ac.il:9998/

Target Word	BoW5	BoW2	DEPS
	nightwing	superman	superman
	aquaman	superboy	superboy
batman	catwoman	aquaman	supergirl
	superman	catwoman	catwoman
	manhunter	batgirl	aquaman
	dumbledore	evernight	sunnydale
	hallows	sunnydale	collinwood
hogwarts	half-blood	garderobe	calarts
	malfoy	blandings	greendale
	snape	collinwood	millfield
	nondeterministic	non-deterministic	pauling
	non-deterministic	finite-state	hotelling
turing	computability	nondeterministic	heting
	deterministic	buchi	lessing
	finite-state	primality	hamming
	gainesville	fla	texas
florida	fla	alabama	louisiana
	jacksonville	gainesville	georgia
	tampa	tallahassee	california
	lauderdale	texas	carolina
	aspect-oriented	aspect-oriented	event-driven
	smalltalk	event-driven	domain-specific
object-oriented	event-driven	objective-c	rule-based
	prolog	dataflow	data-driven
	domain-specific	4gl	human-centered
	singing	singing	singing
	dance	dance	rapping
dancing	dances	dances	breakdancing
	dancers	breakdancing	miming
	tap-dancing	clowning	busking

Universal Dependencies

UD Treebanks

-	\ge	Afrikaans	49K	ÛĒ	-	¢°	X		
-	1	Ancient Greek	202K	ÛĒ	Ľ	Q ^o	×	0.00	
		Ancient Greek-							
	1	PROIEL	211K	ÛĒ	-	00	~	000	A 0
-	9	Arabic	242K	ÛĒ	-	Q [®]	~	000	
	٢	Arabic-NYUAD	629K	ÛĒ	-	¢°	~		
-	١	Arabic-PUD	20K	ÛĒ	-	4	X		ew
-		Basque	121K	ÛĒ	Ľ	¢°	×	000	(B)
-		Belarusian	8K	ÛĒ	-	4	×		e
-		Bulgarian	156K	ÛĒ	Ľ	0°√	×	000	
-	4	Buryat	10K	ÛĒ	-	4	X		¥ 🖽 🗐
-		Catalan	530K	ÛĒ		0:~	~	(IPL)	
-	•2	Chinese	123K	ÛĒ	Ľ	0°√	×	000	W
-	•2	Chinese-CFL	7K	Û		4	X	00	C
-	•	Chinese-PUD	21K	F	-	4	X		₽₩
-		Coptic	4K	ÛĒ		4	~	© 0	▲ 2 0
-		Croatian	197K	ÛĒ	-	0:~	~		■♥W
-		Czech	1,503K	ÛĒ		0:~	~		

http://universaldependencies.org

Universal Dependencies

- Developing cross-linguistically consistent treebank annotation for many languages
- Goals:
 - Facilitating multilingual parser development
 - Cross-lingual learning
 - Parsing research from a language typology perspective.

Universal Dependencies

http://universaldependencies.org

Spacy

 Spacy uses the ClearNLP dependency labels (derived from phrase-structure trees) that are quite similar to the well-document Stanford typed dependencies.

Stanford typed dependencies

nsubj	nominal subject	the dog ran
dobj	direct object	the dog chased the cat
amod	adjectival modifier	the big dog ran
det	determiner	the big dog ran
prep	preposition	the dog ran into the house
pobj	object of preposition	the dog ran into the house

I saw the man with the telescope

nsubj	nominal subject	the dog ran
dobj	direct object	the dog chased the cat
amod	adjectival modifier	the big dog ran
det	determiner	the big dog ran
prep	preposition	the dog ran into the house
pobj	object of preposition	the dog ran into the house

I saw the man with the telescope							
Ι	saw	nsubj		Ι	saw	nsubj	
the	man	det		the	man	det	
man	saw	dobj		man	saw	dobj	
the	telescope	det		the	telescope	det	
telescope	with	pobj		telescope	with	pobj	
with	saw	prep		with	man	prep	

ikr smh he asked fir yo last name so he can add u on fb lololol

Training a parser for a new language

- Annotate texts for syntax (phrase structure or dependency)
- 2. Train a parser

English	Penn Treebank &	Phrase :
English	CCGbank ଜ୍ୟ	Combina categori gramma
English	Prague English Dependency Treebank &	Depende
English	BLLIP WSJ corpus &	Phrase
English	British Component of the International Corpus of English (ICE-GB) &	Phrase s
English	Diachronic Corpus of Present-Day Spoken English (DCPSE) 값	Phrase
English	Lancaster Parsed Corpus 교	Phrase :
English	Susanne Corpus 교	Phrase
English	Christine Corpus &	Phrase s
English	Lucy Corpus 교	Phrase
English	Tübingen Treebank of English / Spontaneous Speech (TüBa-E/S) &	HPSG
English	LinGO Redwoods &	HPSG
English	Multi-Treebank &	Phrase
English	The PARC 700 Dependency Bank 🗾	Depend