

Applied Natural Language Processing

Info 256
Lecture 21: NER (Nov 6, 2023)
David Bamman, UC Berkeley

Named entity recognition

[Mrs Oedipa Maas]per came home from a Tupper-ware party

- Identifying spans of text that correspond to typed entities that are proper names.

Named entity recognition

Type	Tag	Sample Categories	Example sentences
People	PER	people, characters	Turing is a giant of computer science.
Organization	ORG	companies, sports teams	The IPCC warned about the cyclone.
Location	LOC	regions, mountains, seas	The Mt. Sanitas loop is in Sunshine Canyon.
Geo-Political	GPE	countries, states, provinces	Palo Alto is raising the fees for parking.
Entity			
Facility	FAC	bridges, buildings, airports	Consider the Golden Gate Bridge.
Vehicles	VEH planes, trains, automobiles	It was a classic Ford Falcon.	

Figure 17.1 A list of generic named entity types with the kinds of entities they refer to.

Named entity recognition

- GENIA corpus of MEDLINE abstracts (biomedical)
protein

We have shown that [interleukin-1] protein ([IL-1] protein) and [IL-2] PROTEIN Control [IL-2 receptor alpha (IL-2R alpha) gene] DNA transcription in [CD4-CD8- murine T lymphocyte precursors]cell line
cell line
cell type

RNA

BIO notation

B-PERS I-PERS 0000 B-ORG
 tim cook is the ceo of apple

- Beginning of entity
- Inside entity
- Outside entity
[tim cook] PER is the ceo of [apple] org

Named entity recognition

B-PER B-PER

After he saw Harry Tom went to the store

Fine-grained NER

Giuliano and Gliozzo (2008)

Fine-grained NER

WordNet Search - 3.1
 - WordNet home page - Glossary - Help

Word to search for: Bertolt Brecht Search WordNet
Display Options: (Select option to change) © Change
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations Display options for sense: (gloss) "an example sentence"

Noun

- S: (n) Brecht, Bertolt Brecht (German dramatist and poet who developed a style of epic theater (1898-1956))
- instance
- S: (n) dramatist, playwright (someone who writes plays)
- $\underline{\underline{S}: ~(n) ~ p o e t ~(a ~ w r i t e r ~ o f ~ p o e m s ~(t h e ~ t e r m ~ i s ~ u s u a l l y ~ r e s e r v e d ~ f o r ~}$ writers of good poetry))

Entity recognition

Person
... named after [the daughter of a Mattel co-founder] .

Organization	[The Russian navy] said the submarine was equipped with 24 missiles
Location	Fresh snow across [the upper Midwest] on Monday, closing schools
GPE	The [Russian] navy said the submarine was equipped with 24 missiles
Facility	Fresh snow across the upper Midwest on Monday, closing [schools]
Vehicle	The Russian navy said [the submarine] was equipped with 24 missiles
Weapon	The Russian navy said the submarine was equipped with [24 missiles]

Named entity recognition

- Most named entity recognition datasets have flat structure (i.e., non-hierarchical labels).
\checkmark [The University of California] ${ }_{\text {org }}$
\boldsymbol{x} [The University of [California]gPE]org
- Mostly fine for named entities, but more problematic for general entities:
[[John] per's mother] $]_{\text {per }}$ said ...

Nested NER

named	after	the	daughter	of	a	Mattel	co-founder
					B-ORG		
					B-PER	I-PER	I-PER
		B-PER	I-PER	I-PER	I-PER	I-PER	I-PER

Sequence labeling

$$
\begin{aligned}
x & =\left\{x_{1}, \ldots, x_{n}\right\} \\
y & =\left\{y_{1}, \ldots, y_{n}\right\}
\end{aligned}
$$

- For a set of inputs x with n sequential time steps, one corresponding label y_{i} for each x_{i}
- Model correlations in the labels y.

Maximum Entropy Markov Model (MEMM)

General maximum entropy form
 (e.g., logistic regression)

$$
\arg \max _{y} P(y \mid x, \beta)
$$

Maxent with Markov assumption:
Maximum Entropy Markov Model

$$
\arg \max _{y} \prod_{i=1}^{n} P\left(y_{i} \mid y_{i-1}, x\right)
$$

MEMM

MEMM

MEMM

MEMMs condition on the entire input

MEMM

Features

$$
f\left(y_{i}, y_{i-1} ; x_{1}, \ldots, x_{n}\right)
$$

feature	example
$x_{i}=$ man	1
$y_{i-1}=J J$	
i=n (last word of sentence)	
x_{i} ends in -ville	1

NER sequence labeling

```
identity of wi, identity of neighboring words
embeddings for }\mp@subsup{w}{i}{}\mathrm{ , embeddings for neighboring words
part of speech of wi, part of speech of neighboring words
base-phrase syntactic chunk label of wi and neighboring words
presence of wi
w _ { i } \text { contains a particular prefix (from all prefixes of length } \leq 4 )
w _ { i } \text { contains a particular suffix (from all suffixes of length } \leq 4 \text { )}
wi
word shape of }\mp@subsup{w}{i}{}\mathrm{ , word shape of neighboring words
short word shape of }\mp@subsup{w}{i}{}\mathrm{ , short word shape of neighboring words
presence of hyphen
Figure 17.5 Typical features for a feature-based NER system.
```


Gazetteers

- List of place names; more generally, list of names of some typed category
- GeoNames (GEO), US SSN (PER), Getty Thesaurus of Geographic Placenames, Getty Thesaurus of Art and Architecture

Dromore West Dromore
Youghal Harbour Youghal Bay
Youghal
Eochaill
Yellow River
Yellow Furze
Woodville
Wood View
Woodtown House
Woodstown
Woodstock House
Woodsgift House
Woodrooff House
Woodpark
Woodmount
Wood Lodge
Woodlawn Station
Woodlawn
Woodlands Station
Woodhouse
Wood Hill
Woodfort
Woodford River
Woodford
Woodfield House
Woodenbridge Junction Station
Woodenbridge
Woodbrook House
Woodbrook
Woodbine Hill
Wingfield House
Windy Harbour
Windy Gap

Recurrent neural network

- RNNs allow arbitarily-sized conditioning contexts and condition on the entire sequence history.

RNNs for language modeling are already performing a kind of sequence labeling: at each time step, predict the word from \mathscr{V} conditioned on the context

For NER, predict the tag from $\mathscr{\mathscr { y }}$ conditioned on the context

BERT

- Transformer-based model (Vaswani et al. 2017) to predict masked word using bidirectional context + next sentence prediction.
- Generates multiple layers of representations for each token sensitive to its context of use.

-0.7	-1.3	0.4	-0.4	-0.7	1.2	-1.1	1.1	0.6	0.3	-0.1	-0.7	-0.1	0.9	-1.1
$e_{2,1}$					$e_{2,2}$					$\mathrm{e}_{2,3}$				
-0.2	1	0.1	-0.8	-1.	0.3	0.3	-1.7	0.7	-1.	1.6	-0.3	-0.9	-0.7	0.2
$e_{1,1}$					$e_{1,2}$					$\mathrm{e}_{1,3}$				
The					dog					barked				

-0.2	0.3	2.1	1.2	0.6
	$e_{3,1}$			

At the end of this process, we have one representation for each layer for each token

-0.2	0.3	2.1	1.2	0.6
$\mathrm{e}_{3,1}$				

-1.8	-0.2	-2.4	-0.2	-0.1
$\mathrm{e}_{3,2}$				

-0.9	-1.5	-0.7	0.9	0.2
$\mathrm{e}_{3,3}$				

-0.7	-1.3	0.4	-0.4	-0.7
$\mathrm{e}_{2,1}$				

1.2	-1.1	1.1	0.6	0.3
				$\mathrm{e}_{2,2}$

-0.1	-0.7	-0.1	0.9	-1.1
$\mathrm{e}_{2,3}$				

-0.2	1	0.1	-0.8	-1.1
		$\mathrm{e}_{1,1}$		

The

0.3	0.3	-1.7	0.7	-1.1
	$\mathrm{e}_{1,2}$			

1.6	-0.3	-0.9	-0.7	0.2
$\mathrm{e}_{1,3}$				
barked				

BERT

- BERT can be used not only as a language model to generate contextualized word representations, but also as a predictive model whose parameters are fine-tuned to a task.

Evaluation

- We evaluate NER with precision/recall/F1 over typed chunks.

Evaluation

	1	2	3	4	5	6
	tim	cook	is	the	CEO	of
gold	B-PER	I-PER	O	O	O	O

<start, end, type>

		gold	system
Precision	1/4		$<1,1, \mathrm{PER}>$
Recall	1/2	$<7,7, \bigcirc \mathrm{RG}>$	$<7,7, \bigcirc \mathrm{RG}$

Tools for NER

- Spacy (15 languages, blogs, news, comments) https://spacy.io
- Stanza (9 languages, News + Wikipedia) https://stanfordnlp.github.io/stanza/
- LitBank (English, literature)
https://github.com/dbamman/litbank

LitBank

- 100 books from Project Gutenberg

Data

Cat	Count	Examples
PER	9,383	my mother, Jarndyce, the doctor, a fool, his companion
FAC	2,154	the house, the room, the garden, the drawing-room, the library
LOC	1,170	the sea, the river, the country, the woods, the forest
GPE	878	London, England, the town, New York, the village
VEH	197	the ship, the car, the train, the boat, the carriage
ORG	130	the army, the Order of Elks, the Church, Blodgett College

Metaphor

- Only annotate copular phrases whose types denotes an entity class.

John is a doctor
\square
the young man was not really a poet; but surely he was a poem

Personification

- Person includes characters who engage in dialogue or have reported internal monologue, regardless of human status (includes aliens and robots as well).

As soon as I was old enough to eat grass my mother used to go out to work in the daytime, and come back in the evening.

Prediction

How well can find these entity mentions in text as a function of the training domain?
\square ACE $\quad \square$ Literature

Data

- ACE (2005) data from newswire, broadcast news, broadcast conversation, weblogs

Prediction

- Ju et al. (2018): layered BiLSTM-CRF; state-of-the-art on ACE 2005.
- Evaluate performance difference when altering the training/test domain.

ACE-ACE

- Ju et al. (2018): layered BiLSTM-CRF; state-of-the-art on ACE 2005.
- Evaluate performance difference when altering the training/test domain.
- Adding BERT contextual embeddings (Devlin et al. 2019) yields +9.3 F1 score

Toponym resolution

He thought back to their first meeting, four years earlier at a lecture hall in Cambridge, where a group of Bengali poets were giving a recital.

Jhumpa Lahiri, Interpreter of Maladies

Toponym resolution

- Given a gazetteer of place names (paired with latitude/longitude coordinates), identity the physical location of a place mentioned in text.
- Example of the more general task of entity linking (e.g., disambiguating mentions of "Michael Jordan" to the specific referent).

Methods

- Smith and Crane (2001): Each document has a geographic centroid calculated from unambiguous places; referents for each ambiguous place are then scored relative to their distance to this document centroid (and other factors).
- Speriosu and Baldridge (2013): Use non-geographic markers in text to predict geographic location (e.g., "lobster" near Portland \rightarrow Portland, ME, not Portland, OR or Portland, MI).

Activity

13. ner/ToponymResolution.ipynb

- Run NER and toponym resolution to extract place names and map them for a selection of Wikipedia texts and Innocents Abroad (a travelogue by Mark Twain).
- Select your own text from Project Gutenberg (ideally one you know) and run it through that pipeline—does the spatial distribution align with what you expect? Be prepared to share your screen showing your results for the rest of the class.

