

Applied Natural Language Processing

Info 256 Lecture 16: Prompting LLMs 2 (Oct 18, 2023)

David Bamman, UC Berkeley

Language model

 Language models allow us to calculate the probability of the next word conditioned on some context (and different models make different assumptions about how much of that context is available).

$$P(x_i \mid x_1, ..., x_{i-1})$$

• Even BERT can be used this way (by masking out the final word in a sequence)

 $P(x) = \prod_{i=1}^{n} P(x_i \mid x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$ i=1

Encoder-decoder (T5)

$$P(y) = \prod_{i=1}^{n} P(y_i \mid y_1, \dots, y_{i-1}, x)$$

Left-to-right LM (GPT)

$$P(x) = \prod_{i=1}^{n} P(x_i \mid x_1, \dots, x_{i-1})$$

T5

• Encoder-decoder model pre-trained on 750GB of English web text by masking tokens in the input and predicting sequences of them in the output.

Thank you for inviting me to your party last week

		lecoder
Thank you [X] me to your party [Y] week	→ [X] for inviting [Y] last [Z]	

GPT

• Transformer-based causal (left-to-right) language model:

$$P(x) = \prod_{i=1}^{n} P(x_i \mid x_1, \dots, x_{i-1})$$

	Model	Data
GPT-2 (Radford et al. 2019)	Context size: 1024 tokens 117M-1.5B parameters	WebText (45 million outbound links from Reddit with 3+ karma); 8 million documents (40GB)
GPT-3 (Brown et al. 2020)	Context size: 2048 tokens 125M-175B parameters	Common crawl + WebText + "two internet-based books corpora" + Wikipedia (400B tokens, 570GB)

Everything is language modeling

The director of 2001: A Space Odyssey is _____

The French translation of "cheese" is _____

The sentiment of "I really hate this movie" is _____

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Brown et al. (2020, "Language Models are Few-Shot Learners" https://arxiv.org/pdf/2005.14165.pdf

Causal reasoning

Textual entailment

	SuperGLUE	E BoolQ	CB	CB	COPA	RTE
	Average	Accuracy	y Accurac	y F1	Accuracy	Accuracy
Fine-tuned SOTA	89.0	91.0	96.9	93.9	94.8	92.5
Fine-tuned BERT-Large	69.0	77.4	83.6	75.7	70.6	71.7
GPT-3 Few-Shot	71.8	76.4	75.6	52.0	92.0	69.0
	WiC	WSC	MultiRC	MultiRC	ReCoRD	ReCoRD
	Accuracy	Accuracy	Accuracy	F1a	Accuracy	F1
Fine-tuned SOTA	76.1	93.8	62.3	88.2	92.5	93.3
Fine-tuned BERT-Large	69.6	64.6	24.1	70.0	71.3	72.0
GPT-3 Few-Shot	40.4	QA 1	20.5	75 1	00.2	01 1

Brown et al. (2020), "Language Models are Few-Shot Learners"

• Manual prompt design: encoding domain knowledge into prompt templates that are likely to generate a response in the output space.

Туре	Task	Input ([X])	Template	Answer ([Z])
	Sentiment	I love this movie.	[X] The movie is [Z].	great fantastic
Text CLS	Topics	He prompted the LM.	[X] The text is about [Z].	sports science
	Intention	What is taxi fare to Denver?	[X] The question is about [Z].	quantity city
Text-span CLS	Aspect Sentiment	Poor service but good food.	[X] What about service? [Z].	Bad Terrible
Text-pair CLS	NLI	[X1]: An old man with [X2]: A man walks	[X1]?[Z],[X2]	Yes No
Tagging	NER	[X1]: Mike went to Paris. [X2]: Paris	[X1] [X2] is a [Z] entity.	organization location
Text Generation	Summarization	Las Vegas police	[X] TL;DR: [Z]	The victim A woman
	Translation	Je vous aime.	French: [X] English: [Z]	I love you. I fancy you.

• Prompt mining: rather than manually writing prompts, learning highperforming prompts from input/output pairs in training data (e.g., labeled classification/relation extraction examples).

D	Relations	Manual Prompts	Mined Prompts	Acc. Gain
P140	religion	x is affiliated with the y religion	x who converted to y	+60.0
P159	headquarters location	The headquarter of x is in y	x is based in y	+4.9
P20	place of death	x died in y	x died at his home in y	+4.6
P264	record label	x is represented by music label y	x recorded for y	+17.2
P279	subclass of	x is a subclass of y	x is a type of y	+22.7
P39	position held	x has the position of y	x is elected y	+7.9

 Prompt paraphrasing: automatically generate paraphrases of a manual prompt, and see which ones perform best on evaluation data.

Usage	Number	Seed	Example
$egin{array}{c} oldsymbol{s} ightarrow oldsymbol{h} \ oldsymbol{h} ightarrow oldsymbol{h} \ oldsymbol{h} ightarrow oldsymbol{r} \ oldsymbol{h} ightarrow oldsymbol{h} \ oldsymbol{h} ightarrow oldsymbol{r} \ oldsymbol{h} ightarrow oldsymbol{r} \ oldsymbol{h} ightarrow oldsymbol{h} \ oldsymbol{h} ightarrow oldsymbol{h} \ oldsymbol{h} \ oldsymbol{h} ightarrow oldsymbol{h} \ olds$	70	in summary	in short, in a word, to sum up
	34	in other words	to rephrase it, that is to say, i.e.

Yuan et al. 2021, "BARTSCORE: Evaluating Generated Text as Text Generation"

 Prompt optimization: given training data in the form of input/output pairs, learn the prompts (and output labels) that maximize the probability of that training data.

Task	Prompt Template	Prompt found by AUTOPROMPT	Label Tokens
Sentiment Analysis	{sentence} [T][T] [P].	unflinchingly bleak and desperate Writing academicswhere overseas will appear [MASK].	pos : partnership, extraordinary, ##bla neg : worse, persisted, unconstitutional
NLI	$prem [P][T] \dots [T]{hyp}$	Two dogs are wrestling and hugging [MASK] concretepathic workplace There is no dog wrestling and hugging	<pre>con: Nobody, nobody, nor ent: ##found, ##ways, Agency neu: ##ponents, ##lary, ##uated</pre>

Shin et al. 2020, "AUTOPROMPT: Eliciting Knowledge from Language Models with Automatically Generated Prompts"

Prompt augmentation

• Providing several examples in the prompt context to illustrate the intended behavior.

	Poor English input: I eated the purple berries.
	Good English output: I ate the purple berries.
Answered	Poor English input: Thank you for picking me as your designer. I'd appreciate it.
prompts	Good English output: Thank you for choosing me as your designer. I appreciate it.
	Poor English input: The mentioned changes have done. or I did the alteration that you
	requested. or I changed things you wanted and did the modifications.
	Good English output: The requested changes have been made. or I made the alteration that you
	requested. or I changed things you wanted and made the modifications.
	Poor English input: I'd be more than happy to work with you in another project.
	Good English output: I'd be more than happy to work with you on another project.

X: This movie was amazing. Y: positive

great

excellent

fantastic

amazing

Language models

• Remember that these are all still language models that let us calculate the probability of a term (or sequence) conditioned on some context.

$$P(x) = \prod_{i=1}^{n} P(x_i \mid x_1, \dots, x_{i-1})$$

- For classification with a discrete output space,
- E.g., classification with output space = {positive, negative, neutral} and input prompt "X: This movie was amazing. Y:"

argmax
$$P_{GPT-3}(w_n = \text{positive} | w_{1,...,n-1} = "X: This movie was amazing. Y:")$$
$$P_{GPT-3}(w_n = \text{negative} | w_{1,...,n-1} = "X: This movie was amazing. Y:")$$
$$P_{GPT-3}(w_n = \text{neutral} | w_{1,...,n-1} = "X: This movie was amazing. Y:")$$

 Answer mapping: create a dictionary of allowable generations Z (e.g., great, fantastic, amazing, awesome, terrible, bad, horrible) and then map them to output labels (great→positive, fantastic→positive, terrible→negative, bad→negative, horrible→negative).

Туре	Task	Input ([X])	Template	Answer ([Z])
	Sentiment	I love this movie.	[X] The movie is [Z].	great fantastic

 Answer paraphrasing: use a thesaurus to construct alternations of allowable generations (positive={great, amazing, awesome, good}) and calculate the probability of a class as the sum of the probability of all elements in the dictionary (Jiang et al. 2020)

Туре	Task	Input ([X])	Template	Answer ([Z])
	Sentiment	I love this movie.	[X] The movie is [Z].	great fantastic

Documentation debt

- As Bender et al. 2021 notes, "documentation allows for accountability" and it's often unclear what data these models are trained on (e.g., mysterious books1 and books2 corpora).
- When known, training data encodes narrow perspectives e.g., links shared on Reddit; filtering out pages containing words related to sex (as C4 does) filters pornography but also positive sex discussions.
- Biases in training data can lead to representational harms [Kurita et al. 2019; Hutchinson et al. 2020; Gehman et al. 2020]

Toxic generation

 Language models like GPT-{1,2,3} trained on toxic data (e.g., banned subreddits like /r/The_Donald or /r/ WhiteRights) reproduce that toxicity in both prompted and unprompted generations

Privacy

- Large language models (e.g,. GPT-3, BERT) can memorize training data, which is recoverable from it.
- Potential violations of confidential data (e.g., GMail messages) and contextual integrity (data being published in a way that violates a user's expectations of use).

Carlini et al. (2020), "Extracting Training Data from Large Language Models"

Name cloze

At dawn, I lie in bed for a while, watching the sun come up on a beautiful morning. It's Sunday. A day off at home. I wonder if [MASK] is in the woods yet. Usually we devote all of Sunday to stocking up for the week.

→ Gale (Collins, *Hunger Games*)

- Sampled 100 passages from 491 books that contain a single proper name PER entity and no other named entities and assess how often a model gets it right
- Human performance: 0%
- Majority class ("Mary") = 0.6%

Chang et al. (2023), "Speak, Memory: An Archaeology of Books Known to ChatGPT/GPT-4"

GPT-4	ChatGPT	BERT	Year	Author	Title
0.98	0.82	0.00	1865	Lewis Carroll	Alice's Adventures in Wonderland
0.76	0.43	0.00	1997	J.K. Rowling	Harry Potter and the Sorcerer's Stone
0.74	0.29	0.00	1850	Nathaniel Hawthorne	The Scarlet Letter
0.72	0.11	0.00	1892	Arthur Conan Doyle	The Adventures of Sherlock Holmes
0.70	0.10	0.00	1815	Jane Austen	Emma
0.65	0.19	0.00	1823	Mary W. Shelley	Frankenstein
0.62	0.13	0.00	1813	Jane Austen	Pride and Prejudice
0.61	0.35	0.00	1884	Mark Twain	Adventures of Huckleberry Finn
0.61	0.30	0.00	1853	Herman Melville	Bartleby, the Scrivener
0.61	80.0	0.00	1897	Bram Stoker	Dracula
0.61	0.18	0.00	1838	Charles Dickens	Oliver Twist
0.59	0.13	0.00	1902	Arthur Conan Doyle	The Hound of the Baskervilles
0.59	0.22	0.00	1851	Herman Melville	Moby Dick; Or, The Whale
0.58	0.35	0.00	1876	Mark Twain	The Adventures of Tom Sawyer

GPT-4	ChatGPT	BERT	Year	Author	Title
0.76	0.43	0.00	1997	J.K. Rowling	Harry Potter and the Sorcerer's Stone
0.57	0.30	0.00	1949	George Orwell	1984
0.51	0.20	0.01	1954	J.R.R. Tolkien	The Fellowship of the Ring
0.49	0.16	0.13	2012	E.L. James	Fifty Shades of Grey
0.48	0.14	0.00	2008	Suzanne Collins	The Hunger Games
0.43	0.27	0.00	1954	William Golding	Lord of the Flies
0.43	0.17	0.00	1979	Douglas Adams	The Hitchhiker's Guide to the Galaxy
0.30	0.16	0.00	1959	Chinua Achebe	Things Fall Apart
0.28	0.12	0.00	1977	J. R. R. & C. Tolkien	The Silmarillion
0.27	0.13	0.00	1953	Ray Bradbury	Fahrenheit 451
0.27	0.13	0.00	1996	George R.R. Martin	A Game of Thrones
0.26	0.05	0.01	2003	Dan Brown	The Da Vinci Code
0.26	0.08	0.00	1965	Frank Herbert	Dune
0.25	0.20	0.01	1937	Zora Neale Hurston	Their Eyes Were Watching God
0.25	0.14	0.00	1961	Harper Lee	To Kill a Mockingbird

GPT-4	ChatGPT	BERT	Year	Author	Title
0.76	0.43	0.00	1997	J.K. Rowling	Harry Potter and the Sorcerer's Stone
0.57	0.30	0.00	1949	George Orwell	1984
0.51	0.20	0.01	1954	J.R.R. Tolkien	The Fellowship of the Ring
0.49	0.16	0.13	2012	E.L. James	Fifty Shades of Grey
0.48	0.14	0.00	2008	Suzanne Collins	The Hunger Games
0.43	0.27	0.00	1954	William Golding	Lord of the Flies
0.43	0.17	0.00	1979	Douglas Adams	The Hitchhiker's Guide to the Galaxy
0.30	0.16	0.00	1959	Chinua Achebe	Things Fall Apart
0.28	0.12	0.00	1977	J. R. R. & C. Tolkien	The Silmarillion
0.27	0.13	0.00	1953	Ray Bradbury	Fahrenheit 451
0.27	0.13	0.00	1996	George R.R. Martin	A Game of Thrones
0.26	0.05	0.01	2003	Dan Brown	The Da Vinci Code
0.26	0.08	0.00	1965	Frank Herbert	Dune
0.25	0.20	0.01	1937	Zora Neale Hurston	Their Eyes Were Watching God
0.25	0.14	0.00	1961	Harper Lee	To Kill a Mockingbird

Aligning Language Models

 All of the models we've discussed so far (BERT, GPT-*) are optimized to predict the probabilities of words—not to encourage (or discourage) any specific kind of behavior.

> Q: How many bonks are in a quoit? A: There are three bonks in a quoit.

Q: How many rainbows does it take to jump from Hawaii to seventeen? A: It takes two rainbows to jump from Hawaii to seventeen.

Lacker (2020), "Giving GPT-3 a Turing Test" (https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html); Brown et al. (2020), "Language Models are Few-Shot Learners" (NeurIPS)

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

BBB

Instruct-GPT

- We can encourage specific behaviors by providing *feedback* to the model, in two forms:
- Given a prompt ("How many rainbows does it take to jump from Hawaii to seventeen?"), a human writes a preferred response ("A rainbow is not a unit of measurement."). 13K prompts/labels.
- Fine-tune a pretrained model (e.g., GPT-3) on that supervised data to produce a supervised policy (a distribution over words to produce given a model state).

https://arxiv.org/pdf/2203.02155.pdf

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Instruct-GPT

- We can encourage specific behaviors by providing *feedback* to the model, in two forms:
- Given a prompt and a set of model responses, a human ranks those responses from best to worst, defining a preference. **33K prompts + 4-9 outputs per prompt.**
- Train a reward model (using reinforcement learning) to score an output reflecting those learned ranks.

https://arxiv.org/pdf/2203.02155.pdf

ChatGPT

DB

How many bonks are in a quoit?

There is no definitive answer to this question as it depends on the specific rules and dimensions of the quoit and bonk in question. Generally speaking, a quoit is a ring-shaped object that is thrown in a game, while a bonk refers to hitting or striking the quoit with another object, such as a mallet or hammer. The number of bonks required to achieve a particular goal in the game would depend on the specific rules and objectives of the game being played.

ChatGPT

How many rainbows does it take to jump from Hawaii to seventeen?

It is not possible to determine how many rainbows it takes to jump from Hawaii to seventeen, as rainbows and jumping are not relevant to determining distance between locations. Hawaii and Seventeen are not directly connected geographically, so to travel between them, one would typically need to take a flight or other form of transportation. The distance between Hawaii and Seventeen would depend on the specific locations being referred to, as well as the mode of transportation used.

Chain-of-thought

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27. 🗙

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Rationales

Problem 1:

Question: Two trains running in opposite directions cross a man standing on the platform in 27 seconds and 17 seconds respectively and they cross each other in 23 seconds. The ratio of their speeds is:

Options: A) 3/7 B) 3/2 C) 3/8 D) 3/8 E) 2/2**Rationale:** Let the speeds of the two trains be x m/sec and y m/sec respectively. Then, length of the first train = 27x meters, and length of the second train = 17 y meters. $(27x + 17y) / (x + y) = 23 \rightarrow 27x + 17y = 23x + 23y \rightarrow 4x = 6y \rightarrow x/y = 3/2$. **Correct Option:** B

Problem 2:

Question: From a pack of 52 cards, two cards are drawn together at random. What is the probability of both the cards being kings? **Options:** A) 2/1223 B) 1/122 C) 1/221 D) 3/1253 E) 2/153 **Rationale:** Let s be the sample space. Then n(s) = 52C2 = 1326E = event of getting 2 kings out of 4 n(E) = 4C2 = 6P(E) = 6/1326 = 1/221Answer is C **Correct Option:** C

Math Word Problems (free response)	Math Word Problems (multiple choice)	CSQA (commonsense)
Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?	Q: How many keystrokes are needed to type the numbers from 1 to 500? Answer Choices: (a) 1156 (b) 1392 (c) 1480 (d) 1562 (e) 1788	Q: Sammy wanted to go to where the people were. Where might he go? Options: (a) race track (b) populated areas (c) desert (d) apartment (e) roadblock
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.	A: There are 9 one-digit numbers from 1 to 9. There are 90 two-digit numbers from 10 to 99. There are 401 three-digit numbers from 100 to 500.9 + 90(2) + 401(3) = 1392. The answer is (b).	A: The answer must be a place with a lot of people. Race tracks, desert, apartments, and roadblocks don't have a lot of people, but populated areas do. So the answer is (b).
StrategyQA	Date Understanding	Sports Understanding
Q: Yes or no: Would a pear sink in water? A: The density of a pear is about 0.6	Q: The concert was scheduled to be on 06/01/1943, but was delayed by one day to today. What is the date 10 days ago in MM/DD/YYYY?	Q: Is the following sentence plausible? "Joao Moutinho caught the screen pass in the NFC championship."
Thus, a pear would float. So the answer is no.	A: One day after 06/01/1943 is 06/02/1943, so today is 06/02/1943. 10 days before today is 05/23/1943. So the answer is 05/23/1943.	A: Joao Moutinho is a soccer player. The NFC championship is part of American football, not soccer. So the answer is no.
SayCan (Instructing a robot)	Last Letter Concatenation	Coin Flip (state tracking)
Human: How would you bring me something that isn't a fruit?	Q: Take the last letters of the words in "Lady Gaga" and concatenate	Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the

Explanation: the user wants something to eat that isn't a fruit. An energy bar is not a fruit, so I will bring the user an energy bar. Plan: 1. find(energy bar) 2. pick(energy bar) 3. find(user) 4. put(energy bar) 5. done().

A: The last letter of "Lady" is "y". The last letter of "Gaga" is "a". Concatenating them is "ya". So the answer is ya. A: The coin was flipped by Maybelle. So the coin was flipped 1 time, which is an odd number. The coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Wei et al. 2022, "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models"

Chain-of-thought

Wei et al. 2022, "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models"

Instruction-finetuning

"Flan" = Finetuning language models

- Instruction-tune on many many tasks with diversity of data + problem type (1,836)
- With both CoT and non-CoT

- A <u>Task Category</u> is unique task setup (e.g. the SQuAD dataset is configurable for multiple task categories such as extractive question answering, query generation, and context generation).
- A <u>Task</u> is a unique <dataset, task category> pair, with any number of templates which preserve the task category (e.g. query generation on the SQuAD dataset.)

Instructionfinetuning

Instruction-finetuning

			MMLU		BBH		TyDiQA	MGSM
Params	Model	Norm. avg.	Direct	CoT	Direct	CoT	Direct	CoT
80M	T5-Small	-9.2	26.7	5.6	27.0	7.2	0.0	0.4
	Flan-T5-Small	-3.1 (+6.1)	28.7	12.1	29.1	19.2	1.1	0.2
250M	T5-Base	-5.1	25.7	14.5	27.8	14.6	0.0	0.5
	Flan-T5-Base	6.5 (+11.6)	35.9	33.7	31.3	27.9	4.1	0.4
780M	T5-Large	-5.0	2 5.1	15.0	27.7	16.1	0.0	0.3
	Flan-T5-Large	13.8 (+18.8)	4 5.1	40.5	37.5	31.5	12.3	0.7
3B	T5-XL	-4.1	25.7	14.5	27.4	19.2	0.0	0.8
	Flan-T5-XL	19.1 (+23.2)	52.4	45.5	41.0	35.2	16.6	1.9
11 B	T5-XXL	-2.9	25.9	18.7	29. 5	19.3	0.0	1.0
	Flan-T5-XXL	23.7 (+26.6)	55.1	48.6	4 5.3	41.4	19.0	4.9

Self-consistency

 Sample multiple outputs with labels + CoT reasoning; select the answer with majority vote over samples.

Self-consistency

Wang et al. 2023, "Self-Consistency Improves Chain of Thought Reasoning in Language Models"

Self-consistency

Figure 2: Self-consistency (blue) significantly improves accuracy over CoT-prompting with greedy decoding (orange) across arithmetic and commonsense reasoning tasks, over LaMDA-137B. Sampling a higher number of diverse reasoning paths consistently improves reasoning accuracy.

Using GPT-4 to measure the passage of time in fiction

Large language models are valuable research assistants, especially when they refuse to follow instructions.

Harch 19, 2023

28 Comments

Modeling method	Features	Communication between readers	Pearson's r between readers
Linear regression Ridge regression ChatGPT GPT-4 Human reading	words words full text full text full text	no yes yes yes	.35 .49 .59 .68 .74

Table 1: Comparison of modeling methods

https://tedunderwood.com/2023/03/19/using-gpt-4-to-measure-the-passage-of-time-in-fiction/

LLMs for Text-as-Data

- Gilardi et al. (2023), "ChatGPT Outperforms Crowd-Workers for Text-Annotation Tasks"
- Accuracy of ChatGPT vs. MTurk on judging content moderation relevance, stance toward §230, topic ID, content moderation frames, media frames

Model	Ba	selines			FLAN-T:	5		FLAN	Chat		text-	001		text-002	text-003
Data	Rand	Finetune	Small	Base	Large	XL	XXL	UL2	ChatGPT	Ada	Babb.	Curie	Dav.	Davinci	Davinci
Utterance Level Tasks															
Dialect	4.5	41.5	1.9	2.3	15.8	16.5	22.6	23.7	15.0	5.3	5.6	6.0	10.9	10.5	16.9
Emotion	16.7	91.7	23.9	65.3	69 .1	65.9	66.7	70.3	46.2	44.6	16.1	18.7	19.3	39.8	36.5
Figurative	25.0	94.4	23.6	29.0	25.4	40.2	56.0	64.0	50.2	25.0	24.4	25.0	28.8	52.0	60.6
Humor	50.0	73.1	52.0	51.8	56.2	59.0	50.6	58.8	55.4	55.2	59.0	58.6	50.4	51.4	51.0
Ideology	33.3	61.9	33.1	39.2	48.6	49.2	54.4	48.2	54.8	-	33.3	33.3	34.3	57.6	48.2
Impl. Hate	14.3	69.9	17.7	22.7	17.9	36.3	34.5	35.9	29.7	17.1	18.6	15.7	21.3	22.7	27.1
Misinfo	50.0	82.3	50.0	55.4	69.2	70.2	71.2	77.6	69.0	-	50.4	52.2	52.6	75.6	75.0
Persuasion	12.5	40.4	14.3	19.8	43.9	43.4	†51.6	49.4	40.9	-	16.5	17.0	18.8	26.3	26.3
Sem. Chng.	50.0	65.7	50.3	50.0	†66.9	55.5	51.2	53.7	56.1	50.0	50.5	54.3	39.5	45.9	50.0
Stance	33.3	47.0	34.7	47.8	51.3	52.6	55.9	55.4	†72.0	-	33.1	31.0	48.0	57.4	41.3
						Conve	ersation	Level Tas	sks						
Discourse	14.3	47.5	14.7	26.4	37.2	44.3	†52.5	41.9	44.5	13.1	16.5	14.3	17.0	39.8	37.8
Empathy	33.3	33.3	33.3	33.3	35.1	33.7	36.8	†39.8	37.6	-	33.1	35.3	33.3	33.3	33.3
Persuasion	50.0	50.0	48.4	55.3	†57.1	53.0	53.5	53.2	52.9	50.2	50.0	50.0	50.0	50.8	55.9
Politeness	33.3	75.9	33.9	44.2	53.0	59.2	54.2	52.8	50.8	33.1	33.1	32.1	42.2	55.6	47.8
Power	50.0	74.0	47.6	47.2	50.4	56.8	58.8	60.8	61.6	_	52.2	50.6	49.6	50.5	57.0
Toxicity	50.0	64.6	46.8	50.6	49.4	54.2	50.0	56.6	53.0	44.6	50.6	49.0	50.8	52.2	51.2
Document Level Tasks															
Event Arg.*	-	59.4	_	_	-	-	-	-	22.3	_	_	8.6	8.6	21.6	22.9
Event Det.*	_	75.8	9.8	7.0	1.0	10.9	41.8	50.6	51.3	29.8	47.3	47.4	44.4	48.8	52.4
Ideology	33.3	51.0	33.1	34.1	34.1	32.1	49.6	40.3	58.8	32.9	35.1	33.6	25.6	48.7	44.0
Tropes	1.4	0.8	0.9	4.4	8.8	7.9	10.5	16.7	25.4	4.3	7.0	9.6	10.5	18.4	18.4

Ziems et al. (2023), "Can Large Language Models Transform Computational Social Science?"

Ziems et al. 2023

- LLMs are good on tasks that have lots of evidence in pre-training (e.g., sentiment analysis)
- Much worse performance on complex or new tasks that require category definitions.
- "Even the best LLMs exhibit unusably low performance on [Computational Social Science] tasks"

Activity

Llama2 <u>https://replicate.com/meta/llama-2-70b-chat</u> <u>https://www.llama2.ai/</u>

- ChatGPT/GPT-4
 <u>http://chat.openai.com</u>
- Bard <u>https://bard.google.com</u>