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Hypothesis tests

• At what point is the sample statistic so unusual that we can reject the 
null hypothesis as being too unlikely to have generated it?



Example

Binomial probability distribution for number of correct predictions in n=1000 with p = 0.5
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Example
At what point is a sample statistic unusual enough to reject the null hypothesis?

510

580



• How do we define what “too unusual” means? 

• Parametric tests state that the null hypothesis follows a probability 
distribution with a fixed set of parameters: 

• Binomial (parameterized by the success rate p and number of 
trials n) 

• Normal (parametrized by mean μ and standard deviation σ)

Hypothesis tests



• How do we define what “too unusual” means? 

• Parametric tests state that the null hypothesis follows a probability 
distribution with a fixed set of parameters 

• In these tests, we can calculate the probability of the statistic by just 
looking it up 

• e.g., P(x=580 | p=0.50, n=1000) in Binomial distribution.

Hypothesis tests
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Parametric tests

• Parametric tests often rely on a normal approximation for large sample 
sizes, using the central limit theorem (CLT) 

• CLT: the average of independent random variables tends toward a 
normal distribution, even if the original variables themselves are not 
normally distributed.



Accuracy
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1 if x is true

0 otherwise

Accuracy: proportion 
of all data points that 
are correctly predicted. 



Metrics
Metric Simple averaging?

Accuracy ✔

Precision

Recall

F1



Precision

Precision: proportion of 
predicted class that 
are actually that class. 
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Metrics
Metric Simple averaging?

Accuracy ✔

Precision ✔
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F1



Recall

Recall: proportion of 
true class that are 
predicted to be that 
class. 
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Metrics
Metric Simple averaging?

Accuracy ✔

Precision ✔

Recall ✔

F1



F score

F =
2 � precision � recall

precision + recall



Metrics
Metric Simple averaging?

Accuracy ✔

Precision ✔

Recall ✔

F1 ✖



Nonparametric tests

• The big question: if we can’t make a parametric assumption (e.g., that 
accuracy follows a normal distribution), how can we say how unlikely a 
given test statistic is? 

• How do we construct a null distribution?
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Nonparametric tests

• Many hypothesis tests rely on parametric assumptions (e.g., normality) 

• Alternatives that don’t rely on those assumptions: 

• permutation test 
• the bootstrap



β change in odds feature name

2.17 8.76 Eddie Murphy

1.98 7.24 Tom Cruise

1.70 5.47 Tyler Perry

1.70 5.47 Michael Douglas

1.66 5.26 Robert Redford

… … …

-0.94 0.39 Kevin Conway

-1.00 0.37 Fisher Stevens

-1.05 0.35 B-movie

-1.14 0.32 Black-and-white

-1.23 0.29 Indie

Back to logistic 
regression



Significance of coefficients

• A βi value of 0 means that feature xi has no effect on the prediction of 
y 

• How great does a βi value have to be for us to say that its effect 
probably doesn’t arise by chance? 

• People often use parametric tests (coefficients are drawn from a 
normal distribution) to assess this for logistic regression, but we can 
use it to illustrate another more robust test.



Hypothesis tests
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Hypothesis tests measure how (un)likely an observed statistic is under the 
null hypothesis



Hypothesis tests
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Permutation test

• Non-parametric way of creating a null distribution (parametric = normal 
etc.) for testing the difference in two populations A and B 

• For example, the respect shown by OPD to drivers who are Black (=A) 
vs. White (=B) 

• We shuffle the labels of the data under the null assumption that the 
labels don’t matter (the null is that A = B)



• Core idea: if the null hypothesis were true and there’s no difference 
between groups, then it doesn’t matter which label each data point 
has.

Permutation test



respect true 
labels

perm 1 perm 2 perm 3 perm 4 perm 5

x1 62.8 black white white black white white

x2 66.2 black white white white black black

x3 65.1 black white white black white white

x4 68.0 black white black white black black

x5 61.0 black black white white white white

x6 73.1 white black black white black black

x7 67.0 white white black white black white

x8 71.2 white black black black white white

x9 68.4 white black white black white black

x10 70.9 white black black black black black



How many times is the difference in medians between the permuted groups 
greater than the observed difference?

respect true label perm 1 perm 2 perm 3 perm 4 perm 5
x1 62.8 black white white black white white
x2 66.2 black white white white black black
… … … … … … … …
x9 68.4 white black white black white black

x10 70.9 white black black black black black

difference in medians: -5.5 -0.8 0.3 1.4 1.2 -2.0

observed true difference in medians: -5.5



A=100 samples from Norm(70,4) B=100 samples from Norm(65, 3.5)
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p values

• Two-tailed test p-value(z) = 2 � P(Z � �|z|)

• Lower-tailed test p-value(z) = P(Z � z)

• Upper-tailed test p-value(z) = 1 � P(Z � z)

A p value is the probability of observing a statistic at least as extreme as 
the one we did if the null hypothesis were true.
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P-value

> z=1.99< z=-1.99

• If our test statistic is 1.99, then the two-tailed p-value is the sum of the shaded 
probability mass in the extremes.   

• In parametric tests, we can calculate this using the CDF P(X < x) of the null 
distribution.



Permutation test

The p-value is the number of times the permuted test statistic tp is more 
extreme than the observed test statistic t:

p̂ =
1
B

B�

i=1
I[abs(t) < abs(tp)]



A=100 samples from Norm(70,4) B=100 samples from Norm(65, 3.5)
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Permutation test
• The permutation test is a robust test that can be used for many different 

kinds of test statistics, including coefficients in logistic regression. 

• How? 

• A = members of class 1 
• B = members of class 0 
• β are calculated as the (e.g.) the values that maximize the conditional 

probability of the class labels we observe; its value is determined by 
the data points that belong to A or B



• To test whether the coefficients have a statistically significant effect (i.e., 
they’re not 0), we can conduct a permutation test where, for B trials, we: 

1. shuffle the class labels in the training data 

2. train logistic regression on the new permuted dataset 

3. tally whether the absolute value of β learned on permuted data is 
greater than the absolute value of β learned on the true data

Permutation test



Permutation test

p̂ =
1
B

B�

i=1
I[abs(βt) < abs(βp)]

The p-value is the number of times the permuted βp is more 
extreme than the observed βt:



Bootstrap

• The permutation test assesses significance conditioned on the test data 
you have (we rearrange the labels to form the null distribution, but the data 
itself doesn’t change). 

• To also model the variability in the data we have, we can use the statistical 
bootstrap (Efron 1979).



Bootstrap
• Core idea: the data we happen to have is 

a sample from all data that could exist; 
let’s sample from our sample to estimate 
the variability. 

• Our estimate of the point value of the 
metric itself won’t change, but we can 
infer something about the variability of the 
population from the variable in the 
resamples.

train dev test

�
insta



Bootstrap

• Start with test data x of size n 

• Draw b bootstrap samples x(i) of 
size n by sampling with 
replacement from x 

• For each x(i) 

• Let m(i) = the metric of 
interest calculated from x(i)

I love this 
movie

I hate this 
movie

I don’t love 
this movie

Not the 
worst ever! 0.50

I love this 
movie

I don’t love 
this movie

I don’t love 
this movie

Not the 
worst ever! 0.25

I love this 
movie

I love this 
movie

I hate this 
movie

Not the 
worst ever! 0.75

I hate this 
movie

I don’t love 
this movie

I don’t love 
this movie

I love this 
movie 0.50

I love this 
movie

I hate this 
movie

I don’t love 
this movie

I hate this 
movie 0.75

I don’t love 
this movie

I don’t love 
this movie

I don’t love 
this movie

Not the 
worst ever! 0.00

m(i)

accuracy



• At the end of the process, you end up with a vector of values m = 
[m(1), …, m(b)] (for b bootstrap samples) — e.g. [0.25, 0.75,  0.50, 
0.75, 0] for the example before. 

• We can define a 95% confidence interval as the middle 95% of m 

• e.g., α = 0.05 (95% confidence intervals) = [2.5, 97.5] percentile 

• Accurate for larger sample sizes

Bootstrap percentile interval



Activity

7.tests/PermutationTest.ipynb 

• Explore using the permutation test to analyze the significance of logistic 
regression coefficients on your data 

7.tests/Bootstrap.ipynb 

• Using the bootstrap to calculate confidence intervals for any metric — 
try on your own model.


