AN INTEGRATED INFORMATION SYSTEM FOR EDUCATIONAL INNOVATIONS:
 A PRELIMINARY DESIGN AND COST STUDY

Prepared by:
Samuel N. Henrie, Ph.D. Michael D. Cooper, Ph.D. Nancy A. DeWath, M.L.S.

October 1972

Produced by
FAR WEST LABORATORY
FOR
EDUCATIONAL RESEARCH AND DEVELOPMENT Berkeley, California 94705

Information/Utilization Division C.L. Hutchins, Director
Abstract. i
I. Introduction ii
II. System Description 1
A. Data Collection. 14
B. Evaluation and Screening 17
C. Products from the Information System 18
D. On-Line Searching. 21
E. Alternatives 22
F. Relationship of the Proposed Information System to Existing Systems; Management of the System 22
III. Cost Analysis 25
A. Data Gathering Costs 27
B. Screening and Evaluation Costs 29
C. Product Costs 30
D. Update Costs 34
IV. Cost Summary 44
Appendix 1 Key Man Survey and Library Search (Not including ALERT data gathering costs) 48
Appendix 2 Screening and Evaluation (Not including ALERT) 50
Appendix 3 Update Data Gathering (Not including ALERT). 53
Appendix 4 Update Screening and Evaluation (Not including ALERT). 55
Appendix 5 Time-Key Man Survey and Library Searches (Not including ALERT). 56
Appendix 6 Time-Prepare Data For Production (Includes both Data Gathering and Processing Time for ALERT). 58
Appendix 7 Updating-Time (Not including ALERT) 60
Appendix 8 Questionnaires 63
Appendix 9 Programs 66
Appendix 10 Methodology of the Report 69

EXHIBITS, TABLES AND FIGURES

Exhibit 1: Proposed Information System. 2
Table 1 Sample Entry for the "Telephone-book: Type Catalog 19
Table 2 Sample Entry for the "RIE type" Catalog 20
Figure I Organization 23
Figure 2 Unit Flow. 26
Table 3 Data Gathering Cost Summary 27
Table 4 Data Gathering Costs. 28
Table 5 Screening and Evaluation Cost Summary 29
Table 6 Summary of Product Production Costs 30
Table 7 Printing Costs, Subject Area Catalogs 31
Table 8 Production Costs Alternative Products 32
Table 9 Cost of Providing an On-Line Search Facility Base of the Curriculum Data 33
Exhibit 2: Updating Cycle 35
Table 10 Data Gathering Cost Summary (Update) 42
Table 11 Screening and Evaluation Cost Summary (Update) 43
Table 12 Summary of Product Production Costs (Update) 43
Table 13 Total Cost of System Based on Complete Efficiency and 1972 Prices 44
Table 13a Total Cost of System Including 50\% Contingency Factor 44
Table 14 Function Unit Costs (Initial Year) Based on Complete Efficiency and 1972 Prices 45
Table 14a Function Unit Costs (Initial Year) Including 50\% Contingency Factor. 45
Table 15 Function Unit Costs (Update) Based on Complete Efficiency and 1972 Prices 45
Table 15a Function Unit Costs (Update) Including 50\% Contingency Factor. 45

Table 16 Complete Product Unit Costs for Development and Production (Initial Year) Based on Complete Efficiency and 1972 Prices 46

Table 16a Complete Product Unit Costs for Development and - Production (Initial Year) Including 50\% Contingency Factor. 46

Table 17 Complete Product Unit Costs for Development and Production (Update) Based on Complete Efficiency and 1972 Prices... 47

Table 17a Complete Product Unit Costs for Development and Production (Update) Including 50% Contingency Factor. . 47

Although many limited or general sources of information are available to schools, there is no single authoritative source which contains focused and comprehensive information about the new curricula, training proarams, management systems, model projects, etc., which are available for adoption. For this reason the many products being developed through federally sponsored educational research and development are not being as widely disseminated as they could be. This preliminary design and cost study describes a system, synthesized from existing projects and systems, which would bring together such information, process it, and package it in several forms which would be inexpensive to produce, convenient to distribute, and easy for school practitioners to use. Some of the products proposed are: short-entry catalogues describing approximately 2650 innovations available for adoption; other catalogues describing more selected lists of innovations, but in more detail; on-line access to the total file of several thousand innovations; selected lists in certain subject areas; plus byproducts like machine readable lists of over 50,000 "key men" and organizations in the field of education.

The components and processes, are described. Operational cost for the initial year and succeeding years, and production and unit costs for each product are given.

I. Introduction

In recent years information dissemination activities designed to acquaint practitioners in the schools with innovations available for adoption have increased greatly. At the federal leve], USOE has sponsored many projects and the development of new information systems, particularly through the National Center for Educational Communications (NCEC). Several commercial ventures in this field have also addressed a nationwide audience of educators. Most state departments of education have increased their information dissemination activities. Regional and local information centers have grown up, sponsored by ESEA Title III and other federal and state sources or through county and local school funds. Yet with all of this activity, no single authoritative source of information exists through which one might learn about the thousands of innovative curricula, training programs, management systems, model project, etc., which are major new options available for adoption in schools. A member of a curriculum committee in a local school, for example, would have to do considerable research and tap several sources, including some which are not readily accessible in many parts of the country, and wade through much irrelevant material in order to locate information about all of the alternatives that might be considered for a curriculum adoption or an inservice program in fields like health or mathematics. And, even if this search were done well, he would have no assurance that he had not overlooked one or several important alternatives.

From another perspective, the problem being addressed can be considered a marketing problem. The federal government and other sponsors have invested hundreds of millions of dollars into the development of new curricula, programs and projects to improve educational practice. Hundreds of products of these
efforts are now ready for use. But adoptions are not as widespread as they might be simply because most curriculum decision-makers in the local schools are not aware of the existence of these options at the time that they commit funds. If the tremendous investment in educational research and development is to pay off in educational improvement in schools, more effort must be expended to provide decision-makers with timely, comprehensive and accurate information about the products of educational research and development.

The system outlined in this report is designed to solve a part of the problem by providing both comprehensive and selected information on educational research and development products. This information will be put into various packages designed to be inexpensive, easily distributed, and easy to use. The proposed system is not a radical departure, but a synthesis of systems already in existence, partaking of technology already well developed and operational.

There are four major goals of the system:

1. To bring curriculum decision-makers and developers to an awareness of the existence of all new curricula, systems and methodologies for pre-kindergarden through college which have been developed through federal or foundation grants.
2. To bring developers of educational products to an awareness of the existence and characteristics of all new curricula, systems and methodologies a) which are available for further development, or b) which need not be replicated (to avoid "reinventing the wheel").
3. To bring developers and potential adopters to an awareness of the existence and basic characteristics of educational products, systems and methodologies developed by the military which are available for pub1ic use.
4. To bring potential adopters of curriculum information to a state of motivation to either a) adopt, b) reject, or c) investigate further selected, validated curricula, systems and/or methods.

The nature of this document is a preliminary feasibility and design study. The data it contains are based on feasibility and cost data derived from operation of existing processes and systems, as well as expert estimates where hard data does not exist.

The information system developed in this report has three major components: data collection, processing, and output. The data collection process has two stages. The first stage involves generating lists of possible developers who may have products which meet criteria for inclusion in the system at some level. In the second stage telephone calls, letters and questionnaires will be used to solicit information about their projects from those on the lists. During the processing phase, trained researchers will evaluate the project information to determine if it is suitable for further dissemination and also to determine the appropriate level of treatment and dissemination medium. The output phase of the project will result in the production of various products such as product lists and catalogs, on-line computerized interrogation of the total list as recorded on tape, 3×5 card files, microfiche, etc.

In succeeding sections of this report we present a detailed description of the proposed information system followed by a cost analysis.

II. System Description

In this section the overall system and all of its components and processes will be described in detail. A flowchart is presented to give an overview of the system (see Exhibit 1, pp. 2-13), followed by a narrative description. The section will also suggest an organizational structure which incorporates elements of systems and projects already in existence.

The methodology used to attempt to locate all of the appropriate innovations throughout the country, to collect information about them, to screen them to determine whether they meet criteria, to process the information, and to package it for distribution involves three stages: A) Data Collection; B) Evaluation and Screening, and C) Production of Products. This section is organized under these headings.

PROGRAM 3

PRODUCTION: COMPLETE CATALOG

-10-

PRODUCTION: SELECT LISTS

-12-

ALERT

A. Data Collection

One of the more important considerations in designing a unified national system for information collection, processing and dissemination should be the requirement for comprehensive coverage of all candidate projects. In order to insure that all projects are discovered and evaluated, it is suggested that three sources be used to generate a list of potential developers: 1) an initial mail survey to query individuals (key men) who can direct us to potentially relevant projects. (This is the approach adopted by the TAP group in Oregon), 2) a library search to generate a list of current grant recipients, and 3) a library search to generate a list of school districts, university education departments, etc. Then using these lists a second stage of surveying will take place in which basic information about the projects will be solicited from the project developers themselves.

While this large scale data acquisition and screening process is underway, an additional much finer data collection process will be underway. This will be similar to that used in the ALERT system and will involve personal and telephone contacts with developers and recognized authorities in the field, screening of newsletters, journals and other publications, research into grant awards, etc., by educational writer/researchers.

Key Man Survey and Library Searches
One initial source of data will be a survey of those people within the field of education or related fields who by reason of their position and/or achievements know the field and should be able to direct us to possible developers and/or projects. We expect this group to comprise 1% of the approximately 2.7 million people engaged in all aspects of education in the United States, or 27,000 key men.

The method of gathering their names will be any one or combination of the following:
a) researchers will collect names from published directories;
b) organizations using similar surveys will be contacted for their survey lists, e.g., TAP and Northwest Labs;
c) membership lists of professional organizations will be screened or included entirely;
d) existing machine-readable lists will be used (probably from any one of a. through c. above.)

Our cost estimates are based upon method a. which is the costliest and most time-consuming. The inclusion of any of b. through d. will reduce costs. proportionately.

Once collected, these names will be put into machine-readable form and used to generate a mailing. Questionnaires will be sent to each requesting a) the titles of specific projects that one may know of that meet our criteria and their developers; b) the names of developers who might possibly be engaged in work that suits our concerns (see sample questionnaire Appendix 8).

Response to mail surveys is known to be not good; questionnaires and cover letters will be designed to be attractive and to convey the importance of the survey. If possible the recipients should be assured that this survey would serve to reduce the total number of such inquiries made, because the information would be used by all government agencies. Also, the non-profit aspect of the operation will be emphasized, as people in education are less responsive to commercial enterprises. Nevertheless, we expect to have to mail two follow-up surveys to non-respondents. Of the 27,000 in our initial survey, we expect 40% response to the first questionnaire, with the first follow-up bringing that figure up to 50% of the total, and the second increasing it to
60% for a total response of 16,200 .
Of these 16,200 who return our questionnaire we expect that 50% wil1 have nothing whatever to report and 50% (or 8,100) will report an average of 2 developers and/or projects each for a total of 16,200 names and addresses.

These responses will be keypunched and put on magnetic tape so that they may be computer sorted to eliminate any duplication of names. The file will then be printed and screened so that obviously unsuitable leads may be deleted. We expect 20% (or 3,000) to be dropped at this stage, leaving 13,200 names and addresses of possible developers.

In addition to the 13,200 names generated by the key man survey, we will collect from published lists: a) the names and addresses of the approximately 2,000 current recipients of federal grants for developing educational materials, b) the addresses of 33,000 school districts, colleges and universities with education departments, and c) the addresses of educational R\&D organizations.

All of this information will be put in machine-readable form and merged. After duplicate entries have been eliminated, we expect a file of 40,000 names and addresses for our developer survey.

Developer Survey

The next step will be to send questionnaires to the people on the final list of 40,000 . The developer survey instruments will consist of a cover letter and a 3 page questionnaire asking details about the project(s) in which each recipient is engaged. Most of the questions will be of the 'check one' variety, to facilitate response and hopefully ensure a reasonable rate of response. A 100-300-word abstract of the project will also be requested (see sample questionnaire in Appendix 8).

Follow-up letters and questionnaires will again be required. Response is expected to be 40% to the lst mailing, another 10% of the total from the

2nd mailing, and 10% from the 3 rd for a total response of 60% or 24,000 .
Of these 24,000 , we anticipate 50% to have no project to describe, leaving 12,000 responses to be coded, keypunched, put onto tape, and sorted for duplication. After merging and elimination of those which are not development type projects, we expect 3,000 discrete projects that meet the criteria for inclusion to emerge at this stage.

B. Evaluation and Screening

At this point the entire file of 3,000 projects and the descriptions provided by the developers will be printed from the computer tapes for screening by experienced educational researchers. The projects will be sorted in 3 groups: a) unavailable or otherwise unsuitable, to be deleted and stored for future reference (750 projects); b) good, but in categories that are less important to potential public school adopters (1500 projects); c) the best of the file (750 projects). Groups b. and c. will be stored in one machine file, but each project will be coded to indicate its grouping. At this point, the projects reported in ALERT (400) will be merged with group c.

This file of approximately 2650 projects will be the basis for all of the products of the proposed information system, except the ALERT type catalog.

In a separate process research assistants (i.e., people with a good background in education and in a particular subject area), possibly employed at the various ERIC Clearinghouses, will seek out the most significant projects in their subject areas. Using a variety of search techniques, but relying mainly on personal contact, they will filter the projects that come to their attention and produce detailed descriptions of the most worthwhile projects. The selections of the 400 products to be described will be made through a system developed at Far West Laboratory for Educational Research and Development which takes into account both the state of the art in the field and
expressed user need. Each of these will be described in considerable detail, in a parallel format designed to provide the kinds of information teachers and other school people find most useful. The 400 product descriptions will be compiled into an "ALERT type" catalog of 600 to 800 pages (including front matter and indexes).

Tying the development of the ALERT catalogs into the larger information system will mean that the ALERT researchers will be able to feed into the system not only the projects selected, but also those discarded, in the form of either contacts for the developer survey or full project descriptions as compiled during the ALERT search.

C. Products from the Information System

From the final file of all projects a number of products will be produced:

1. A "telephone book" catalog of brief entries (basic data, but no abstract) for all 2650 projects. (see Table 1)
2. A select "R.I.E. type" catalog of the 1200 projects from group c. (the elite) plus those from the ALERT type catalog. Entries in this catalog will include both basic data and 100-300 word abstracts. (see Table 2)
3. Special catalogs of all of the projects in this final file that fall into certain subject areas for which a high demand is expected, incluing same detail of information as in 2.
4. Copies of the tape itself on which the file is stored will be distributed to information centers or to a central computer with which information centers can communicate via telephone lines to do demand searches for clients.
5. In addition to these four, an ALERT type catalog will have been produced by the separate process described previously.
6. Other primary products may include 3×5 index cards containing the same information as the catalogs, microfiche of all products of the system, etc. Possible spin off products include the machine readable key man list, grant recipient list, institution list, and developers list, data for study of trends in development, etc.

Table 1
Sample Entry for the "Telephone-book" Type Catalog

Accession Number:
Program or Project Name:

Developer:

Distributor:

Type of Project:
Subject Area:
Target Audience:

Availability:

097-462
Confrontation: A Human Relations Training Unit for Teachers and Administrators

Far West Laboratory for Educational Research and Development 1 Garden Circle, Hotel Claremont Berkeley, California 94705

Anti-Defamation League of B'nai B'rith 315 Lexington Avenue New York, New York 10016

Inservice training in multi-ethnic schools Intergroup relations

Teachers and administrators in multi-ethnic elementary and high schools

Available now

Table 2
Sample Entry for the "RIE type" Catalog

Accession Number:
Program or Project Name

Developer:

097-462
Confrontation: A Human Relations Training Unit for Teachers and Administrators

Far West Laboratory for Educational Research and Development
1 Garden Circle, Hotel Claremont Berkeley, California 94705
Sponsor or Funding Agency and Grant No.

Distributor:

Type of Project:
Subject Area:
Target Audience:

Availability:

USOE

Anti-Defamation League of B'naj B'rith 315 Lexington Avenue New York, New York 10016

Inservice training in multi-ethnic schools
Intergroup relations
Teachers and administrators in multi-ethnic elementary and high schools

Available now

Abstract:

Confrontation is a human relations training unit for elementary or high school teachers and staff. It was developed in 1968 by the Far West Laboratory for Educational Research and Development in cooperation with the large urban school districts of the San Francisco Bay Area. It has been adapted and disseminated by the Anti-Defamation League in order to help staff in multi-ethnic schools to analyze their own specific problems related to race and to find solutions. The ten-hour course consists of (a) "discussion stimulator" films showing teacher/student and school/parent confrontations, (b) a pattern for organizing discussion groups throughout a school district, and (c) a training course for discussion leaders. The unit is designed to be used at school sites in five separate sessions; the staff of the school view the films all together and then split into groups of ten for two-hour discussion sessions. Each group is led by a discussion leader from the school's staff. Success of the unit depends largely on the dynamics of the small-group process and thus on the effectiveness of the discussion leaders. The pilot study conducted by the Far West Laboratory indicated that teachers thought the unit increased their awareness and understanding of racial problems. The Anti-Defamation League intends that the small discussion groups and leaders should be considered as a continuing resource for solving school problems after the course is completed.

D. On-Line Searching

One output that can easily be developed as a result of storing and updating the information in computer form is the ability to use computer equipment to search the file for specific projects matching a particular user requirement. There are two alternatives available in this respect. One is batch processing and the other is on-line searching. With a batch processing search system, a user submits a request for information to a central clearinghouse and then waits days or weeks for a final set of documents that satisfy his needs. An on-line system is one in which the user engages in a dialog with the computer system via a typewriter-like console connected by telephone lines to a computer. On-line access to the curriculum file would have the advantage of immediate response. The user (or an intermediary) at the terminal interacts directly with the computer, shaping his request for information according to the machine's responses.

Both batch processing and on-line services are commercially available. The cost estimates used here are those for a commercial on-line system known as ORBIT, developed by System Development Corporation. A batch processing system might conceivably cost less but would have a longer response time and higher user dissatisfaction.

Since ERIC Centers exist that provide approximately the same on-line search service but for an ERIC data base, we recommend the use of those facilities and have only estimated 1) the costs of tying an ERIC center into the data base, and 2) the additional costs to the ERIC center of the increased workload generated by our expected initial demand of $7-8$ requests per week to each of 12 ERIC centers. We have not gone on to project cost figures for increased demand as the data base becomes better known, since all costs are derived from the costs per unit of time in each category. Because the average
time required for each search will remain the same, the unit cost for each search will also, regardless of demand.

E. Alternatives

A system as complicated as this leaves room for much variation. Some of the important alternatives to the design described herein are as follows:
A. Different media for the products.

1) Microfiche is a possibility;
2) Product 2, a select catalog, may be produced as a set of 3×5 index cards;
3) A market for the file on magnetic tape may develop.
B. Intermediate products may also be developed. The key man, grant recipient, and institutions' lists, and the file of developers' names may be valuable to other projects, since the names have not only been gathered but also put into machine-readable form and are therefore easily manipulated. The programs developed to manipulate this data may also be applied to similar projects.

F. Relationship of the Proposed Information System to Existing Systems; Management of the System

In the preceding description of the system, we have discussed the way in which data would be gathered for screening. We view this process as one which can be performed through existing agencies and institutions. We have also described how existing systems for automated data storage, on-line access, and generation of print products, microfiche, etc., can be employed.

About the only new element necessary to build and operate the system is an administrative-coordination center. This center would handle such functions as: 1) subcontracting tasks to the agencies which carry out the various func-
tions, 2) fiscal management and control, 3) planning, design, and evaluation, 4) system management, 5) coordination with funding agencies, 6) coordination with other federally sponsored information dissemination efforts. Such a center could be operated out of NCEC or subcontracted to an outside agency. (See Figure 1)

Figure I

ORGANIZATION

Key man survey: TAP, NWL
Developers' survey: TAP, CEDAR, NWL
Alert:
FWL and ERIC Clearinghouses
Printing:
ERIC and/or GPO
On-line searches: ERIC Centers

Administrative Coordination Center
(NCEC) or Subcontractor

The existing organizations which might participate in the system are as follows:

1) Technological Applications' Project (TAP) - currently engaged in a survey of 18,000 key men with the eventual aim of acting as a clearinghouse for information about, and reproduction of, curriculum materials.
2) Northwest Labs - collects information about projects developed by the military and other government agencies on request for contracting agencies. Uses key man surveys, developer surveys, personal contact.
3) CEDAR - does a loosely-structured survey of developers within its membership.
4) Far West Laboratory - uses research, review of journals and other literature, and personal contacts to gather data for its highly selective ALERT system.
5) ERIC Clearinghouses filter large quantities of information in their respective subject areas.
6) ERIC Centers provide on-line access to the ERIC files.

Participation of these agencies would not need to interfere with their present missions or operations, since this system has been conceived to be compatible with work already being done by them.

III. Cost Analysis

The projected costs for the proposed information system are presented in this section.

Figure 2 shows the volume of transactions that are expected to be processed in order to arrive at 3050 projects which will be disseminated. For example, we expect to survey 27,000 educational leaders to give us leads as to the existence of curriculum projects. From the educational leaders we expect 13,200 potential project developers to be discovered. Adding an additional 33,000 schools, colleges and research and development organizations, plus 2,000 federal grant recipients, we expect to survey 48,200 individuals and organizations to determine if they have, or know about, projects that could be relevant. Out of the total of 48,200 leads, we expect to find 3,000 projects that meet the criterion for inclusion in the curriculum data base. In addition to the information obtained from the educational leaders as to the existence of projects, we expect to use a number of highty trained researchers to ferret out particularly significant projects via informal communication's channels. This approach is expected to yield 400 relevant projects.

FIGURE 2
UNIT FLOW

A. Data Gathering Costs

The data gathering phase of the project involves three major steps. The first is the library searches and key man survey, next the survey to the developers of projects, and third the ALERT survey of potentially relevant projects. The total costs for this phase are given in Table 3. Table 4 shows the steps that are involved in each of the processes. Appendix 1 presents the detailed cost analysis of the procedures together with the computer processing required. Estimated times to perform each of the processes will be found in Appendix 5.

Table 3

Data Gathering Cost Summary

Process	Direct Cost	Indirect Cost	Total Cost
Clerical Assistance	\$ 11,962	\$ 4,961	\$ 16,923
Questionnaire design \& testing	1,410	581	1,991
Mailing of Questionnaire	26,475	1,024	27,499
Key punching	25,518	12,759	38,277
Key punch rental	4,050	-	4,050
Computer programming	3,269	1,105	4,374
Computer time	4,260	-	4,260
Subtotal	76,944	20,430	97,374
ALERT data gathering	26,079	11,657	37,730
TOTAL	\$103,023	\$32,081	\$135,104
Total Plus 50\% Contingency Factor			\$202,656

Table 4
Data Gathering Costs

Table 4 (continued)

ALERT

	Direct	Indirect	Total
Research Assistant Salaries (6 FTE @ $\$ 830 / \mathrm{mo}$.)	\$14,928	\$ 7,464	\$22,392
Managers (l FTE)	4,375	2,187	6,562
Typists (2 FTE)	4,000	2,000	6,000
Materials, Telephone, etc.	2,776	---	2,776
TOTAL	\$26,079	\$71,651	\$37,730

B. Screening and Evaluation Costs

The second phase in the process involves analysis of the survey results and selection of the projects that meet the criterion for inclusion in the system. The costs for this phase are summarized in Table 5. Appendix 2 presents the detailed steps in the process together with a description of the computer programs needed to perform the tasks. Appendix 6 gives the times required to perform the functions.

Table 5
Screening and Evaluation Cost Summary

	Direct Cost	Indirect Cost	Total Cost
Clerical: read and code	\$ 225	\$ 113	\$ 338
Decision-making personnel	14,000	7,000	21,000
Key punching	102	51	153
Key punch rental	15	--	15
Computer programming	6,135	3,068	9,203
Computer time			
Development	2,535	--	2,535
Running	2,880	- --	2,880
	\$ 25,892	\$ 10,232	\$ 36,124
ALERT screening, writing, validating, \& preparation \quad 79,740 33,450 113,190 for printing			
TOTAL	\$105,632	\$ 43,682	\$149,314
Total Plus			
50\% Contingency Factor			\$223,971

C. Product Costs

In this section we present the costs for producing various products. (see Table 6). All of those listed can be derived from the machine-readable data base, with the exception of the ALERT type catalog which contains more detailed information and is written by educational writer/researchers and produced by standard typesetting and printing methods. The list of products is as follows:

1. An "ALERT-7ike" catalog of 250-400 selected innovations.
2. A "telephone-book" type catalog containing abbreviated listings and indexes of the 2,650 curriculum projects.
3. A "Research in Education type" catalog containing full descriptions of 1,200 projects including abstracts and indexes.
4. Microfiche copies of the products.
5. Sets of 3×5-inch cards each containing the curriculum project descriptions.
6. Special selected lists or limited catalogs of projects, such as lists pertaining to early childhood development or social studies.

Table 6
Summary of Product Production Costs

Product

Alert-type catalog
Telephone-book type catalog without project abstracts

Catalog with abstracts of selected projects

TOTAL
Total Plus 50\% Contingency Factor
$5,000 \quad 15,180$
3.01

6,000
15,840
2.64
$8,000 \quad 16,540$
2.07

10,000
17,620
1.76

Low Estimates of Press Run Press Run Total Cost Unit Cost $3,500 \quad \$ 8,000 \quad \$ 2.28$

High Estimates \& Press Run Press Run Total Cost Unit Cost 3,500 5,000 \$ 8,400 $\$ 1.68$
\$39,720
$\$ 41,860$
$\$ 59,580$

The costs for the limited catalogs covering specific subject areas (Item 6) are particularly difficult to calculate because the demand is uncertain. Since we expect 10 different subject area catalogs, the uncertainty is multiplied by a factor of 10 and becomes very difficult indeed. Since the same function can be served by an on-line search within the given subject area, and with a higher degree of specificity, low-demand catalogs may be dropped entirely.

Accordingly, we have omitted this group of products from our major calculations. They may be considered a bonus category: the cost of data collection and screening is borne entirely by the other products, only the printing costs need be considered if this product is to be included. These are shown in Table 7.

Table 7
Printing Costs, Subject Area Catalogs
Assumed: 10 catalogs, averaging 270 entries per catalog.

Low Press Run				High Press Run			
Copies each Catalog	Production Total	$\begin{aligned} & \text { n Total } \\ & \text { Cost } \end{aligned}$	Unit Cost	Copies each Catalog	Production Total	Total Cost	Unit Cost
5,000	50,000 \$	\$30,600	\$0.61	8,000	80,000	\$42,000	\$0.50

Besides the cost summaries presented for the three basic products in the preceeding table, we consider the possibility of the production of microfiche and 3×5 inch cards as other potential products. Unit costs for these products are difficult to calculate without knowing the exact product mix.

In the calculations that follow it is assumed that both types of catalogs (the "RIE like," and the "telephone book like" catalogs) are produced on fiche
and that fixed costs for the products are divided on the basis of number of microfiche cards produced for each product.

The 3×5 index cards (Item 5) are designed to be used in a situation where individual records of the projects are desirable. Each card has printed on it all the information that would be in the "telephone book like" catalog. There are a total of four cards describing each project, all the same except for the main entry. In other words, access is provided through four different attributes of each project.

Table 8

Production Costs Alternative Products

Product
Microfiche copy of telephone book type catalog

Microfiche copy of RIElike catalog
3×5 inch cards containing telephone like catalog

Press Run
4800

3000

4800 cards per set for 900 sets

Total Unit Cost Per Set
\$ 0.55
0.62
10.64

The final product that results from the system is the on-line searching capability. In the cost analysis of providing such a searching capability, we assume that a commercially available on-line information retrieval system (such as ORBIT from SDC) is used and that there are no design and programming costs of developing such a system. A number of additional factors influence the derivation of these costs. First we assume a regional network of twelve search centers each with its own terminal (ERIC centers or their equivalent). In addition we assume that each center averages eight requests per week that can be handled by an on-line search of the curriculum data base. Each search is assumed to take 15 minutes of connect time with the central computer and an additional 30 minutes of preparation time per query for a total of 6 hours
of professional time per week. It is also assumed that existing information centers are used in providing this additional service so that no capital outlays are required for buildings, etc.

Table 9
Cost of Providing an On-Line Search Facility Base of the Curriculum Data

Cost Element

Yearly Costs

Personne1: $6 \mathrm{hrs}$.$/ week$ at $\$ 14,000 /$ year	$\$ 2,500$	$\$ 30,000$
Connect change to on-1ine system $\$ 35 /$ hour	3,500	42,200
Line charges at $\$ 10 /$ hour	1,000	12,000
Terminal rental $\$ 100 /$ month	1,200	2,4000
Print search results $\$.05 /$ page for average of 10 pages per search	200	$\$ 100,800$

Initial Start-up Costs
(first year only)

Training fee Start-up fee	200	2,400
Total Start-up Costs	$\$ 200$	
	$\$ 200$	
Total first year costs	$\$ 8,600$	$\$ 2,900$

Based on the data given in Table 9 we can calculate the unit cost per search. estimating elght searches per weok per center for 4800 searches per year. The unit cost of $\$ 15,50$ per search for the first year and $\$ 14,90$ ner search for each succeeding year.

D. Update Costs

In addition to consideration of costs of the initial cycle of gathering the curriculum information, analyzing and evaluating the projects and finally producing the products, there is an additional step in the cost analysis. It is assumed that the information system is an ongoing project and that the data base of projects will be updated periodically. A number of initial costs related to program development only occur in the first year of the project, so that updating costs will be less. (see Exhibit 2)

The update processing is intended to use the information from the previous year as much as possible in order to eliminate the cost of redoing things; e.g., developers whose projects have been published and for which project descriptions are therefore already available on tape are to be sent copies of the descriptions as they exist and asked to indicate changes. This avoids the confusion of trying to decide which projects are redundant and the waste of re-keying essentially the same 500 -words of description each year.

EXHIBIT 2: UPDATING CYCLE

Table 10 presents a summary of the data gathering costs for each year after the first year, and Table 11 provides the cost summary for the screening and evaluation phase. Table 12 presents the production costs. Appendix 3 presents a detailed breakdown of the update costs of the data gathering phase and the steps in the updating process of conducting the library searches, and key man and developers surveys. Appendix 4 gives the detailed steps in the process of screening and evaluating the updated information (except for. ALERT) and Appendix 7 presents the number of man days required to perform the updating for data gathering and screening and evaluation (including ALERT.)

Table 10
Data Gathering Cost Summary (Update)

	Direct Cost	Indirect Cost	Total Cost
Clerical	\$ 7,462	\$ 3,731	\$11,193
Keypunching	9,000	4,500	13,500
Mailing	27,990	1,275	29,175
Computer Time	3,755		3,755
Keypunch Rental	1,475		1,475
Subtotal	49,682	9,506	59,188
ALERT Data Gathering*	13,283	2,554	15,837
Total	\$62,965	\$12,060	\$75,025
Total Plus 50\% Contingency Factor			\$112,538

[^0]Table 11
Screening and Evaluation Cost Summary (Update)

Clerical	\$ 75	\$ 38	\$ 113
Decision-making personnel	14,000	7,000	21,000
Keypunching	16	8	24
Keypunch Rental	5		5
Computer Time	2,860		2,860
Subtotal	\$16,956	\$7,046	\$24,002
ALERT screening, writing, validating and preparation for printing*	39,849	7,661	47,510
Total Total Plus 50\% Contingency Factor	\$56,805	\$14,707	$\begin{array}{r} \$ 71,512 \\ \$ 107,260 \end{array}$
*ALERT will be almost completely repeated every two years. These are the amortized figures.			

Table 12
Summary of Product Production Costs
(Update)

ALERT type catalog
Low Estimates of Press Run High Estimates of Press Run

Press	Total	Unit	Press	Total	Unit
Run	Cost	Cost	Run	Cost	Cost
5,000	\$ 8,400	\$1.68	8,000	\$ 8,900	\$1.11

"Telephone book-type"
6,000 15,840
$2.6410,000$
24,080
2.41
catalog wi thout abstracts
Catalog with abstracts of
$10,000 \quad 17,620$
$1.76 \quad 15,000$
25,720
1.61 selected projects "RIE type"

Total
$\$ 41,860$
Total Plus 50\% Contingency Factor \$62,790
$\$ 58,700$
$\$ 88,050$

IV. Cost Summary

The total cost of the proposed information system is given in Table 13. Unit costs for the data gathering and screening and evaluation phases are supplied in Tables 14 and 15. The unit costs for producing the various products have been presented previously in Tables 6 and 12. Tables 16 and 17 gather all of this together to present unit costs for gathering and screening the data and printing the products. (See Appendix 10 for a discussion of the method of assigning burdens in Tables 16 and 17.)

Table 13
Total Cost of System Based on Complete Efficiency and 1972 Prices

	Initial Year		Succeeding Years	
	Low Press Run	$\begin{gathered} \text { High Press } \\ \text { Run } \\ \hline \end{gathered}$	$\begin{gathered} \text { Low Press } \\ \text { Run } \end{gathered}$	$\begin{gathered} \text { High Press } \\ \text { Run } \\ \hline \end{gathered}$
Data gathering	\$135,104	\$735,104	\$75,025	\$75,025
Screening \& evaluating	149,314	149,314	71,512	71,512
Product costs	39,720	41,860	41,860	58,700
On-line costs	103,700	103:700	100:800	100.380
TOTAL	\$ 427,838	\$429,978	\$289,197	\$306,037
	Table 13a			
Total Cost of System Including 50\% Contingency Factor				
	Low Press Run	ia] Year High Press Run	Succe Low Press Run	ing Years High Press Run
Data gathering	\$202,656	\$202,656	\$112,538	\$112,538
Screening \& evaluating	223,971	223,971	107,268	107,268
Product costs	59,580	62,790	62,790	88, 500
On-line costs	155,550	155,550	151,20n	151,20n
Total	\$641,757	\$644,967	\$433,796	\$459,056

Table 14

> Function Unit Costs (Initial Year) Based on Complete Efficiency and 1972 Prices

	Number of Units Processed	Unit Cost
Data gathering (less ALERT)	3000 projects	\$32.46
Screening \& evaluation (less ALERT)	2650 projects	13.41

Table 14a
Function Unit Costs (initial year) Including 50\% Contingency Factor

| | Number of Units
 Processed | |
| :--- | :---: | :---: | | Unit Cost |
| :---: |
| Data gathering (less ALERT) |
| Screening and evaluation
 (less ALERT) |

Table 15
Function Unit Costs (Update) Based on Complete Efficiency and 1972 Prices

	Number of Units Processed	Unit cost
Data gathering (less ALERT) 3000 projects	$\$ 19.72$	
Screening \& evaluation (less ALERT)	2650 projects	9.32

Table 15a
Function Unit Costs (Update)
Including 50\% Contingency Factor
Number of Units
Processed \quad Unit Cost

Data gathering (less ALERT)
3000 projects
$\$ 29.58$
Screening \& evaluation
2650 projects
\$73,98

Table 16
Complete Product Unit Costs for Development and Production (Initial Year) Based on Complete Efficiency and 1972 Prices

Product	Low Press Run			High Press Run		
	Units	Total Cost	Unit Cost	Units	$\begin{aligned} & \text { Total } \\ & \text { Cost } \end{aligned}$	$\begin{aligned} & \text { Unit } \\ & \text { Cost } \end{aligned}$
ALERT-type catalog	3,500	\$158,920	\$45.34	5,000	\$159,320	\$31.86
Telephone book-catalog without abstracts	5,000	88.411	17.68	6,000	89,071	14.84
Catalog with abstracts of selected projects	8,000	46,577	5.82	' 10,000	47,657	4.77
0 n -1 ine searches	4,800	103,700	15.50			

Table 16a
Complete Product Unit Costs for Development and Production (Initial Year) Including 50% Contingency Factor

Product	Low Press Run			High Press Run		
	Units	Total Cost	Unit Cost	Units	Total Cost	Unit $\cos t$
ALERT-type catalog	3,500	\$238,380	\$68.01	5,000	\$238,987	\$47.79
Telephone book-catalog without abstracts	5,000	132,617	26.52	6,000	133,607	22.26
Catalog with abstracts of selected projects	8,000	69,866	8.73	10,000	71,486	7.16
On-line searches	4,800	155,550	23.25			

Table 17
Complete Product Unit Costs for Development and Production (Update) Based on Complete Efficiency and 1972 Prices

Product	Low Press Run			High Press Run		
	Units	Total Cost	Unit Cost	Units	Total Cost	Unit Cost
ALERT-type catalog	5,000	\$159,320	\$31.86	8,000	\$159,820	\$19.97
Telephone book-type catalog without abstracts	6,000	88,062	14.67	10,000	96,302	9.63
Catalog with abstracts of selected projects	10,000	38,588	3.86	15,000	46,688	3.11
On-7ine searches	4,800	100,800	14.90			

Table 17a
Complete Product Unit Costs for Development and Production (Update) Including 50\% Contingency Factor

Product	Low Press Run			High Press Run		
	Units	Total Cost	Unit Cost	Units	Total $\cos t$	$\begin{aligned} & \text { Unit } \\ & \text { Cost } \\ & \hline \end{aligned}$
ALERT-type catalog	5,000	\$238,980	\$47.79	8,000	\$239,730	\$29.96
Telephone book-type catalog without abstracts	6,000	132,093	22.01	10,000	144,453	14.45
Catalog with abstracts of selected projects	10,000	57,882	5.79	15,000	70,732	4.67
On-line searches	4,80n	151.200	22.35			

Appendix 1

Key Man Survey and Library Search (Not including ALERT data gathering costs)
Salaries

Computer
Other

1. Collecting \& coding names
2. Keying names
3. Program \#1 to convert to tape file development running costs
4. Program \#2 to sort duplicate names development running costs
5. Program \#4 to print mailing labels devel opment running costs
6. Writing questionnaire \& letters
7. Mailing
8. Opening \& recording responses
9. Keying codes of respondents
10. Program \#5 to update file \& produce follow-up mailing development running
11. Code responses
12. Key responses
13. Program \#16 to convert to tape file development running
14. Program \#2 sorting duplicates \& printing development running
15. Read file \& code deletions
16. Key deletions \& verify
17. Program \#3 to delete entries development running

Total Cost

	Salaries	Computer	Other
1. Collect additional names \& code	\$1700		
2. Keying names	9750		1560
3. Program \#16 to convert to tape file development running	30	$\begin{array}{r} 25 \\ 275 \end{array}$	
4. Program \#2 to sort for duplicate names development running	250	$\begin{array}{r} 75 \\ 800 \end{array}$	
5. Program \#4 to produce mailing labels development running	132	$\begin{array}{r} 50 \\ 300 \end{array}$	
6. Writing of field testing questionnaires; fee to participants	1015		250
7. Mailing	1227		14,428
8. Opening, recoding, filing responses	350		
9. Keying codes of respondents	288		50
10. Program \#5 to update file \& produce follow-up mailing (twice) development running	130	$\begin{array}{r} 50 \\ 800 \end{array}$	
11. Sort geographic files for duplicates	625		
12. Code descriptions of projects	3325		
13. Key descriptions of projects	2880		450
14. Program \#16 to convert to tape file development running	295	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	
15. Program \#2 to sort duplicates development running	250	$\begin{array}{r} 75 \\ 200 \\ \hline \end{array}$	
Total Cost	\$22,247	\$2,900	\$76,738

Appendix 2

Screening and Evaluation

(Not including ALERT)

	Salaries	Computer	Other
1. Program \#8 to print file development running	200	$\begin{array}{r} 75 \\ 150 \end{array}$	
2. Read file \& code product destinations	14000		
3. Key \& verify codes	70		10
4. Program \#7 to append codes development running	400	$\begin{array}{r} 115 \\ 30 \end{array}$	
5. Key data from Alert	32		5
6. Program \#6 to add Alert data development running	295	$\begin{array}{r} 100 \\ 20 \end{array}$	
7. Program \#8 to print file development running	200	$\begin{array}{r} 75 \\ 150 \end{array}$	
8. Read file to verify	150		
9. Program \#9 to convert to ERIC compatible format development running	1190	$\begin{aligned} & 560 \\ & 450 \end{aligned}$	
10. Program \#13 to generate select subject area lists \& print development running	730	$\begin{array}{r} 350 \\ 160 \end{array}$	
11. Program \#15 to index development running	510	$\begin{aligned} & 170 \\ & 320 \end{aligned}$	
12. Read to verify	25		
13. Program \#12 to generate short catalog with abstracts \& print development running	730	$\begin{aligned} & 350 \\ & 160 \end{aligned}$	
14. Program \#15 to index development running	510	$\begin{aligned} & 170 \\ & 640 \end{aligned}$	
-50-			

Screening and Evaluation -- page 2

	Salaries	Computer	Other
15. Read to verify	25		
16. Program \#11 to generate complete brief-entry catalog development running	860	$\begin{aligned} & 400 \\ & 160 \end{aligned}$	
17. Program \#15 to index development running	510	$\begin{aligned} & 170 \\ & 640 \end{aligned}$	
18. Read to verify	25		
Total Cost	\$20,462	\$5,415	\$75

Update Data Gathering

Appendix 3
Update Data Gathering (Not including ALERT)

	Salaries	Computer	Other
1. Collecting \& coding changes in list	\$ 200		
2. Keying changes	64		10
3. Program \#3 to update list from previous year		165	
4. Program \#4 to produce mailing labels		135	
5. Mailing	820		10,000
6. Opening \& recording responses	250		
7. Keying codes of respondents	200		30
8. Program \#5 to update \& produce follow-up mailings (twice)		400	
9. Code responses	3850		
10. Key responses	6000		
11. Program \#16 to convert to tape		80	
12. Program \#2 to sort for duplicates \& print		235	
13. Read file \& code deletions	162		
14. Key deletions \& verify	400		60
15. Program \#3 to delete		120	
Total Cost	11,946	\$1,135	\$10,100

	Salaries	Computer	Other
1. Collect \& code new grant recipients	\$ 250		
2. Key new grant recipients	576		100
3. Use program \#2 to compare new developers' list with previous year		800	
4. Read \& code corrections	575		
5. Key corrections	160		
6. Program \#16 to produce final file		270	
7. Program \#4 - mailing labels		200	
8. Program \#8 - descriptions of projects from previous year for review		150	
9. Mail	1730		15400
10. Update list - program \#5 produce follow-up		800	
11. Program \#8 for follow-up of no. 8		200	
12. Open, code, file responses	1850		
13. Review geographic files	325		
14. Key descriptions	1600		250
15. Program \#6 to create final file		100	
16. Program \#2 to sort duplicates		100	
Total Cost	\$7,766	\$2,620	\$15,750

Appendix 4
Update Screening and Evaluation (Not including ALERT)

	Salaries	Computer	Other
1. Program \#8 to print file		150	
2. Read \& code product destination if change from previous year	\$14000		
3. Key \& verify codes	16		5
4. Program \#7 to add codes		30	
5. Program \#8 to print \& verify		150	
6. Program \#9 to convert to ERIC format		450	
7. Program \#13 to generate select subject area lists \& print		160	
8. Program \#15 to index 7)		320	
9. Read to verify	25		
10. Program \#12 to generate short catalog with abstracts		160	
11. Program \#15 to index 10)		640	
12. Read	25		
13. Program \#11 to generate complete, brief-entry catalog		160	
14. Program \#15 to index 13)		640	
15. Read to verify	25		
Total Cost	\$74,091	\$2,860	\$5

Appendix 5
Time-Key Man Survey and Library Searches
(Not including ALERT)

	Survey	$\begin{aligned} & 6000 \\ & \text { Clerical } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { In Work } \\ 7500 \\ \text { Keypunch } \end{array}$	$\begin{aligned} & \text { Days } \\ & 7000 \\ & \text { Hi gher } \end{aligned}$	$\begin{gathered} 14000 \\ \text { Highest } \end{gathered}$
Collecting \& coding names		64			
Keying names			184		
Write questionnaire/letters					2
Opening \& coding respondents		10			
Elapsed time survey 1	10				
2	10				
3	15				
Code responses		154			
Key codes of respondents			6		
Key responses			200		
Read responses \& code discards				6	
Key \& verify deletions			6		
Total Working Days	35	228	396	6	2

Time-Developer Survey

	Survey	$\begin{aligned} & 7500 \\ & \text { Keypunch } \\ & \hline \end{aligned}$	$\begin{aligned} & 6000 \\ & \text { Clerical } \\ & \hline \end{aligned}$	$\begin{gathered} 7000 \\ \text { Higher } \end{gathered}$	$\begin{gathered} 14000 \\ \text { Highest } \\ \hline \end{gathered}$
Keying additional names		315			
Collecting \& coding these names			40		
Writing \& field testing questionnaire					15
Opening, recording, filing responses			14		
Keying codes of respondents		9			
Sort thru geographic files			25		
Key descriptions of projects		90			
Survey: elapsed time 1	10				
2	10				
3	15				
Code descriptions of projects			113		
Total Working Days	35	414	182		15

Appendix 6

Time-Prepare Data For Production (Includes both Data Gathering and Processing Time for ALERT)

Time-Prepare Data For Production

	7500 Key	6000 Clerical	7000 Higher	14000 Highest
Screen list of 3000 projects \& code				225
Key \& verify	2			
Key data from ALERT	1			
Read entire file to verify				
Totle Working Days	3	6		

ALERT Data Gathering and Processing:
ALERT type materials can continue to be developed by Far West Laboratory for Educational Research and Development or can be subcontracted to ERIC Clearinghouse and other similar agencies. This table indicates the full time equivalence FTE of research assistants' time necessary to produce 400 entries in the period of one year. The FTE estimates have been broken down by subject area, following those assigned to ERIC Clearinghouses as much as possible.

Clearinghouse research assistants, based on 50 projects/yr. = . 75 FTE

Disadvantaged	.60 FTE
Early Child.	.30
Foreign Languages	.30
Reading \& Commun.	1.00
Sci. \& Math	.80
Soc. Studies	.50
Teacher educ.	.50
Aesthetics and Fine Arts	.20
Affective educ.	.20
Career educ.	.50
Drug educ.	.20
Environmental educ.	.20
Ethic educ.	.20
Bilingual educ.	.30
Health/Sex educ.	.20
Total	$6.00 \mathrm{FTE} \mathrm{@} \$ 9,960 / \mathrm{yr}$. or
	$\$ 830 / \mathrm{mo}=\$ 59,760$

\$59,714 Salaries for Research Assistants

Appendix 7

Updating-Time
(Not including ALERT)

Updating-Time
Key Man Survey

	Elapsed	Keypunch	Clerical
Collecting \& coding changes in list			8
Keying changes		2	
lst mailing	10		
2nd mailing	10		
3rd mailing	15		
Opening \& recording responses			10
Keying codes of respondents		6	
Code responses			154
Key responses		200	
Read \& code discards			6
Key \& verify deletions		6	
Total Working Days	35	214	178

> Updating-Time
> Developers' Survey

	Survey	Keypunch	
Keying additional names		18	
Collecting \& coding these		10	
Read list to compare changes from previous year Opening, recording, etc. responses Code changes in previously published projects Sort geographic files for duplicates	10	23	
Key 2000 descriptions Survey elapsed time: 1	10	72	
2		50	13

Updating-Time
 Prepare for Production

	Keypunch		14,000 Clerical
Read \& code product destinations			220
Key codes \& verify	.5		
Total Working Days	.5		220

Appendix 8
Questionnaires

Please enter any corrections in your mailing address here:
Name \qquad
Organization \qquad
Street Address \qquad
City, State, Zip \qquad

Project title (if it has no final title, please supply a working title in brackets):

Name of organization supplying development funds: \qquad
Grant No.: \qquad
Distributing organization: \qquad
Address: \qquad

Target Audience (check one)

Students General

Gifted Slow Learners Educationally Disadvantaged Ethnic Group Learning Disability Students

Physically Handicapped Parents, Community Group Administrators/Supervisors Teachers \& Paraprofessionals Other (specify) \qquad
\qquad

Grade Level (check all appropriate)

Early Childhood
Kindergarten
Grades 1-3
Grades 4-6
Grades 7-9
Grades 10-12
Adult Basic Education College or University Professional ed. training Other (specify) \qquad
\qquad
Type of Project (check all appropriate)
Curriculum
Preservice Training Inservice Training Planning and Administration Alternative Schools

Mode1 or Demonstration Project Community-School Relations New Instructional Methodology New Organizational Arrangements Other (specify)

Subject Area (check all appropriate)
-

English \& Language Arts
Fine Arts Reading

Thinking Skills
Foreign Language, Bilingual
Social \& Behavioral Science Ethnic Studies

Vocational or Career Educ. Health Educ.

Math \& Science Special Educ.

- Environment Studies \& Ecology Other (specify) \qquad

When Available (check one)
__ presently available Indeterminate within 6 mos. or less Definitely Long Term
Other (specify) within 6-12 mos.
_ Other (specify)

Abstract (In the space below, please describe the purpose and essential features of the project in 100-300 words):
[Cover letter will explain project and need, and ask the "key man" to list projects of his own as well as to supply names of people who might have projects.]

Name of Project (If project is unnamed or title is unknown, please supply a descriptive title in brackets.)

Principal Investigator: \qquad
Developing Organization: \qquad
Street Address: \qquad
City, State: \qquad

Please supply any comments that may help us identify and/or evaluate the project:

Appendix 9

Programs

Programs

The proposed information system will consist of a relatively small number of project descriptions once the initial data has been screened and evaluated. But in order to arrive at the three thousand item data base nearly seventy thousand questionnaires will have to be processed. Because of the magnitude of the surveys, it is felt that the data collection and processing activities should be automated. A side benefit of this decision is that there will be no additional costs in producing a machine readable data base that can be searched on-line. In addition, since all the records describing the projects will be in machine-readable form the cost to produce catalogs and indexes will be less because computer controlled composition techniques can be employed in the printing process.

The tables that follow briefly describe sixteen general purpose programs that will be used in the processing of the curriculum survey data and transforming it into tapes ready for use in photocomposition or for use as input to an on-line search program's data management system. The tables assume a programmers salary of $\$ 16,000$ per year and the salary estimates include both design and programming time.

Program Number	Program Description \quad C	Computer Costs for Program Development	Programmers Salary Direct Labor
1	Create list of key man from punched cards onto tape	\$ 50	\$ 60
2	Sort list of names for duplicates (Design algorithm and implement)	300	990
3	Develop generalized program to add and/or delete records from address tape	100	330
4	Generate address labels from address tape and print listings of addresses	100	260
5	Update mailing list tape with codes representing people who have responded to questionnaire. Generate new mailing labels and new list of non-respondents	100	260
6	Create project developers file from output of second questionnaire	200	590
7	Add and/or delete fields for developers file	150	400
8	Print a formatted list of all information about projects	150	400
9	Convert tapes to a format suitable for input to a photocomposition program	600	3300
10	Selectively print fields of a tape	150	395
11	Generate from the base tape the tape containing names and addresses only for tele-phone-type catalog	400	860
12	Generate from the base tape the tape to be used for creating the ERIC type catalog	350	730
13	Generate from the base tape the special catalog tapes	350	730

Program Name	Program Description	Computer Costs for Program Development	Programmers Salary Direct Labor
14	Format the base tape so as to produce input for printing the 3×5 cards	250	460
15	Create an index for any set of records within a file	810	1530
16	Create file of developers names from output of first questionnaire	50	60
	Total Cost	\$4,110	\$11,355

Appendix 10
Methodology of the Report

Methodology of the Report

Basic Steps

The basic steps in preparing this report were:

1) design the proposed system, including step-by-step description of processes;
2) estimate the unit flow within the system, using the experiences of similar projects and estimates provided by knowledgeable people;
3) calculate the time and cost of each process from such considerations as unit time, number of units, and salary of personnel required;
4) derive overall costs and unit costs of products.

Cost Assumptions

All costs are current as of this writing; changes due to inflation or price changes cannot, of course, be predicted. The following is a list of basic cost assumptions:

Clerical Salaries--
\$500n/yr.
rote work, opening envelopes, transferring information to code sheets for keypunching, etc.

Keypunchers Salaries-- \$7500/yr.
Clearinghouse Research Assistants Salaries-- \$9960/yr.
Professional Information Specialists salaries-- \$14000/yr.
Rental of Keypunching Machines-- \$100/mo.
Computer Time-- \$300/hr.

Contingency Factor

Summary data is presented in two ways: 1) directly as derived from the figures presented throughout the report. These figures are based upon a condition in which all parts of the system work as planned and in which 1972
prices for materials, equipment, services and salaries prevail; 2) with a 50% contingency factor built in to account for the inevitable problems encountered in implementation of a new system and also to allow for inflation. The factor of 50% was decided upon arbitrarily - a guess based on experiences with other new systems and current rates of inflation.

Amortization of Data Gathering and Screening Costs

Generally, our method of assigning burdens is quite straightforward. However, the division of the data gathering and screening costs between phone book-type and select catalogs needs elaboration.

Certain project descriptions that appear in the phone book-type catalog make up the entire file of the select catalog with abstracts, 1200 of the total 2650 projects. Up to this point, the handling of the data has been the same, and so has the cost of collection.

Since the 1200 projects appear twice in our output, the unit costs of collecting these should be charged 50% to each product. The remaining 1450 appear only in the short entry (phone book-type) catalog and should be charged 100\%.

The 1450 projects are .55 of the whole, therefore .55 of the total cost goes to the short entry catalog, along with half the cost of the 1250 , or $.5 \times .45=.225$. Thus the short entry catalog is charged $.55+.225=.775$ of the whole. The remaining .225 is charged to the catalog with abstracts.

A similar problem exists for development of the "ALERT like" catalogs in allocating costs between data gathering activities and screening, writing, validation activities. Since both types of activities are carried out by the same personnel continuously, we have arbitrarily assigned 25% of the total cost to data gathering and 75% to the processing type activities.

[^0]: *ALERT will be almost completely repeated every two years. These are the amortized figures.

