COMPUTER SECURITY IN THE 21ST CENTURY
COMPUTER SECURITY IN THE 21ST CENTURY

Edited by
D. T. LEE
Academia Sinica, Taiwan

S. P. SHIEH
National Chiao Tung University, Taiwan

J. D. TYGAR
UC Berkeley

Springer
Contents

List of Figures ix

1 Introduction 1

Dieter Gollmann

1. Acknowledgments 2

Part I Security Protocol Design

2 Challenges in Protocol Design and Analysis 7

1. Introduction 7

2. Purpose of Analysis 8

3. The Environment 9

4. Case Studies 12

5. Conclusions and Challenges 21

References 22

3 Private Matching 25

Yaping Li, J. D. Tygar and Joseph M. Hellerstein

1. Introduction 25

2. Problem Statement 29

3. Threat Models 31

4. Terminology and Assumptions 33

5. Techniques 35

6. Data Ownership Certificate (DOC) 35

7. Security Analysis 41

8. Cost Analysis 47

9. Related Work 47

10. Future Work 48

References 49

4 Authentication Protocol Analysis 51

Jonathan Millen

1. Introduction 51
2. Modeling Computational Operations 52
3. Diffie-Hellman and Group Protocols 55
4. Deeper Models of Encryption 56
5. Decidable Formal Methods 56
6. Future Directions 58
References 58

Self-certified Approach for Authenticated Key Agreement 61
Tzong-Chen Wu and Yen-Ching Lin
1. Introduction 61
2. Proposed 2-PAKA Protocol 63
3. Proposed n-PAKA Protocol 64
4. Security Analysis 65
5. Conclusion 66
References 66

Part II P2P and Ad Hoc Networks

6
Experimenting with Admission Control in P2P Networks 71
Nitesh Saxena, Gene Tsudik and Jeong Hyun Yi
1. Introduction 72
2. Background 73
3. Bouncer: Admission Control Toolkit 75
4. Integration with Peer Group Systems 79
5. Experiments 83
6. Discussion 86
7. Future Directions 87
References 88

7
Adaptive Random Key Distribution Schemes for Wireless Sensor Networks 91
Shih-I Huang, Shiuhpyng Shieh and S.Y. Wu
1. Introduction 92
2. Adaptive Random Pre-distribution Scheme 94
3. Uniquely Assigned One-Way Hash Function Scheme 96
4. Evaluation 97
5. Conclusion 102
References 102

Part III Intrusion Detection, Defense, Measurement

8
Measuring Relative Attack Surfaces 109
Michael Howard, Jon Pincus and Jeannette M. Wing
1. Introduction 110
2. Terminology and Model 113
Contents

3. Dimensions of an Attack Surface 117
4. Security Bulletins 121
5. Analyzing Attack Surfaces 125
6. An Example Attack Surface Metric 126
7. Discussion of the RASQ Approach 133
8. Related Work 134
9. Future Work 134
References 136

9
A Modeling of Intrusion Detection Systems with Identification Capability 139
Pei-Te Chen, Benjamin Tseng and Chi-Sung Laih
1. Introduction 139
2. Traditional IDS model 141
3. A New model based on Identification (IDSIC) 142
4. Conclusion 144
References 144

10
A Source-End Defense System against DDoS Attacks 147
Fu-Yuan Lee, Shihpyng Shieh, Jui-Ting Shieh and Sheng-Hsuan Wang
1. Introduction 148
2. Review of D-WARD 151
3. Proposed System 153
4. Performance Evaluation 161
5. Conclusion and Future Work 166
References 167

11
BEAGLE: Tracking System Failures for Reproducing Security Faults 169
Chang-Hsien Tsai, Shih-Hung Liu, Shuen-Wen Huang, Shih-Kun Huang and Deron Liang
1. Introduction 170
2. The Detection of Control State Corruption 171
3. The BEAGLE System Design and Implementation 174
4. Experiments and Assessment 175
5. Related Work 176
6. Conclusions 178
References 179

Part IV Multimedia Security

12
Web Application Security—Past, Present, and Future 183
Yao-Wen Huang and D. T. Lee
1. Introduction 184
2. Common Web Application Vulnerabilities 185
3. Current Countermeasures 187
4. Concluding Remarks and Future Work 214
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Binding updates in Mobile IPv6</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>The Canvas protocol</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>An “attack” on the Canvas protocol; dotted lines indicate unused links.</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>AgES protocol</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Security goals satisfied by the protocols in the malicious model. (*): Note that for these examples, we do not have a strong protocol. However, we do have a collusion-free strong protocol which is strong in the absence of colluding attacks. X^{(1)} denotes a protocol is unspoofable in the absence of colluding adversaries.</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Security goals satisfied by the protocols in the semi-honest model. (*): Note that for these examples, we do not have a strong protocol. However, we do have a collusion-free strong protocol which is strong in the absence of colluding attacks. X^{(1)} denotes a protocol is unspoofable in the absence of colluding adversaries.</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Cost analysis</td>
<td>46</td>
</tr>
<tr>
<td>6.1</td>
<td>Admission Control</td>
<td>74</td>
</tr>
<tr>
<td>6.2</td>
<td>GAC System Architecture</td>
<td>75</td>
</tr>
<tr>
<td>6.3</td>
<td>Dynamic Threshold Update Procedure</td>
<td>77</td>
</tr>
<tr>
<td>6.4</td>
<td>Binding GMC to PKC</td>
<td>78</td>
</tr>
<tr>
<td>6.5</td>
<td>GAC Packet Structure</td>
<td>78</td>
</tr>
<tr>
<td>6.6</td>
<td>Secure Gnutella Protocol Flow</td>
<td>80</td>
</tr>
<tr>
<td>6.7</td>
<td>Spread GAC Message Encapsulation</td>
<td>83</td>
</tr>
<tr>
<td>6.8</td>
<td>Basic Operation Cost</td>
<td>84</td>
</tr>
<tr>
<td>6.9</td>
<td>Signature Size</td>
<td>85</td>
</tr>
<tr>
<td>6.10</td>
<td>Gnutella Experiments</td>
<td>85</td>
</tr>
<tr>
<td>6.11</td>
<td>Secure Spread Experiments</td>
<td>86</td>
</tr>
</tbody>
</table>
7.1 Unordered key pool and the Two-Dimension key pool with $t = 10, s = 10$. 95
7.2 A key selection example 96
7.3 Comparison of different configured Two-Dimension Key Pool Selecting Schemes and Eschenauer’s scheme (key pool size is 100,000) 99
7.4 Comparison of Random-pairwise keys scheme and UAO scheme in memory requirement and maximum supported network size. 102
8.1 Relative Attack Surface Quotient of Different Versions of Windows [Howard, 2003] 111
8.2 Microsoft Security Bulletin MS02-005a: Cumulative Patch for Internet Explorer (I) 122
8.3 Microsoft Security Bulletin MS02-005a: Cumulative Patch for Internet Explorer (II) 123
8.4 Mapping RASQ Attack Vectors into Our Formalism 129
8.5 Howard’s Relative Attack Surface Quotient Metric 131
9.1 The roles and relationships in TIDSs. 141
9.2 The roles and components in IDSIC. 143
10.1 An example of the deployment of D-WARD 152
10.2 Average O/I values 154
10.3 Classification of Traffic Flow 157
10.4 Constant SYNC attack. 162
10.5 Pulsing SYNC attack. 162
10.6 Increasing SYNC attack. 163
10.7 Gradual SYNC attack. 163
10.8 Constant bandwidth overloading attack. 164
10.9 Pulsing bandwidth overloading attack. 165
10.10 Increasing bandwidth overloading attack. 165
10.11 Gradual bandwidth overloading attack. 166
11.1 A program with buffer overflow. 171
11.2 Process of the function wrapper generation 173
11.3 The architecture of Beagle 174
11.4 Calibration of the notepad.exe stack trace 176
11.5 The stack backtrace of the RobotFTP Server 1.0 with overlong input 176
12.1 Example of an XSS vulnerability. 185
12.2 Compromised HTML output. 186
12.3 Example of a SQL injection vulnerability. 186
12.4 Example of a general script injection vulnerability. 187
List of Figures

12.5 A more severe script injection bug. 187
12.6 Web application vulnerabilities result from insecure information flow, as illustrated using XSS. 190
12.7 An example of our test pattern for XSS. 195
12.8 System architecture of WAVES. 198
12.9 A comparison among static verification tools. 206
12.10 Primitive lattice. 209
12.11 Type-aware lattice. 209
12.12 Example A. 209
12.13 Example B. 209
12.14 Example of a false positive resulting from a type cast. 209
12.15 WebSSARI system architecture. 212
13.1 $n_R = 3$ resolutions of an image. 234
13.2 Two images of different qualities. 234
13.3 Partitioning resolutions into precincts. 236
13.4 Packet generation process. 237
13.5 Structure of a JPEG2000 code-stream. 237
13.6 Arrangement of packets in a code-stream following progression order layer-resolution-component-precinct. 237
13.7 A third party publication model. 238
13.8 The access control system setup. 239
13.9 An example Merkle hash tree. 241
13.10 The Merkle tree for a code-stream. 242
13.11 Merkle tree for an example code-stream. 243
13.12 The optimized Merkle tree. 244
13.13 An example optimized Merkle tree. 245
13.14 An example Sandhu tree. 247
13.15 Rooted tree for key generation for access control. 248
13.16 An example rooted tree for a code-stream with $n_R = 3$, $n_L = 3$, and $n_P = 2$. 250
14.1 Three binary connection trees. 258
14.2 The search order of STC. 258
14.3 The experimental images. 261
Chapter 1

INTRODUCTION

D. T. Lee
Academia Sinica, Taiwan

S. P. Shieh
National Chiao Tung University, Taiwan

J. D. Tygar
UC Berkeley

Computer security has moved to the forefront of public concern in the new millennium. Hardly a day passes where newspaper headlines do not scream out worries about “phishing”, “identity theft”, “browser exploits”, “computer worms”, “computer viruses”, “online privacy”, and related concerns. The major vendor of computer operating systems has announced that computer security is now its top priority. Governments around the world, including most major governments in North America, Europe, and East Asia continue to worry about “cyber-terrorism” and “cyber-war” as active concerns.

It was in this charged environment that we decided to hold a workshop in December 2003 on emerging technologies for computer security. The workshop was held in Taipei in conjunction with several other conferences (notably Asiacrypt) and featured leading researchers from the Asia-Pacific region and the United States. What followed was three days of exchange of ideas that led to a number of significant developments. This book attempts to share some of the research trends that were reflected in the best papers published at the conference.

The first section deals with the classical issue of cryptographic protocols. How can we build secure systems that need to exchange private data, while guarding against eavesdroppers who listen in on attacks? Dieter Gollmann examines five case studies that show challenges in cryptographic protocol design and argues for a new framework for viewing the problem. Yaping Li, J. D.
Tygar, and Joseph Hellerstein show how private matching can be used to exchange database information while still protecting the privacy of individuals. Jonathan Millen brings formal analysis to bear, showing that current techniques of analyzing protocols still fail to protect against a number of problems. And Tzong-Chen Wu and Yen-Ching Lin argue for a new key agreement method based on self-certification.

We next turn our attention to networking, and examine the rapidly expanding fields of peer-to-peer networking and ad hoc networking. These clearly introduce a number of new security challenges, and are especially relevant in light of recent studies suggesting the peer-to-peer networking now comprises the majority of networking over the Internet. Nitesh Saxena, Gene Tsudik, and Jeong Hyung Yi present a new system, Bouncer, that provides arguably the most fundamental element of peer-to-peer security: secure admissions control. They also discuss its actual implementation in several real peer-to-peer networks. And Shih-I Huang, Shiu hypying Shieh, and S. Y. Wu present key distribution systems for an important emerging type of ad hoc network: wireless sensor networks.

A fundamental change in thinking about security has been the change of emphasis from building impenetrable systems to building systems that rapidly respond when attacks commence. Michael Howard, Jon Pincus, and Jeannette M. Wing report on work at Microsoft that proposes a completely new way of thinking about the vulnerability of systems: “relative attack surfaces”. Pei-Te Chen, Benjamin Tseng, and Chi-Sung Laih give a new way of modeling intrusion detection systems. Fu-Yuan Lee, Shiu hypying Shieh, Jui-Ting Shieh, and Sheng-Hsuan Wang propose a new type of system for actively responding to distributed denial of service attacks; and Chang-Hsien Tsai, Shih-Hung Liu, Shuen-Wen Huang, Shih-Kun Huang, and Deron Liang discuss their BEAGLE system that allows security faults to be reproduced for debugging purposes.

Together, these works present an agenda of important security topics for computer security in the new century.

1. Acknowledgments

Support for this book came from Academia Sinica, National Chiao Tung University, and the University of California, Berkeley. D. T. Lee received ad-
ditional support from National Science Council, and Science and Technology Advisory Group of Executive Yuan, Taiwan. Shiuhpyng Shieh received additional support from National Science Council, Ministry of Education, Taiwan, and Industrial Technology Research Institute. J. D. Tygar received additional support from the US National Science Foundation and the US Postal Service. The opinions in this book are those of the authors and do not necessarily reflect the opinions of the funding sponsors or any government organization.