Unsupervised Extraction of False Friends from Parallel Bi-Texts Using the Web as a Corpus

Preslav Nakov, Sofia University "St. Kliment Ohridski"
Svetlin Nakov, Sofia University "St. Kliment Ohridski"
Elena Paskaleva, Bulgarian Academy of Sciences
Introduction
Introduction

- Cognates and False Friends
 - **Cognates** are pairs of words in different languages that are perceived as similar and are translations of each other.
 - **False friends** are pairs of words in two languages that are perceived as similar, but differ in meaning.

- The problem
 - Design an algorithm for extracting all pairs of false friends from a parallel bi-text.
Cognates and False Friends

- Some cognates
 - ден in Bulgarian = день in Russian (day)
 - idea in English = идея in Bulgarian (idea)

- Some false friends
 - майка in Bulgarian (mother) ≠ майка in Russian (vest)
 - prost in German (cheers) ≠ прост in Bulgarian (stupid)
 - gift in German (poison) ≠ gift in English (present)
Method
Method

- False friends extraction from a parallel bi-text works in two steps:
 1. Find candidate cognates / false friends
 - Modified orthographic similarity measure
 2. Distinguish cognates from false friends
 - Sentence-level co-occurrences
 - Word alignment probabilities
 - Web-based semantic similarity
 - Combined approach
Step 1: Identifying Candidate Cognates
Step 1: Finding Candidate Cognates

- Extract all word pairs \((w_1, w_2)\) such that
 - \(w_1 \in\) first language
 - \(w_2 \in\) second language

- Calculate a modified minimum edit distance ratio \(\text{MMEDR}(w_1, w_2)\)
 - Apply a set of transformation rules and measure a weighted Levenshtein distance

- **Candidates** for cognates are pairs \((w_1, w_2)\) such that
 - \(\text{MMEDR}(w_1, w_2) > \alpha\)
Step 1: Finding Candidate Cognates

Orthographic Similarity: MEDR

- **Minimum Edit Distance Ratio (MEDR)**
 - \(\text{MED}(s_1, s_2) = \) the minimum number of INSERT / REPLACE / DELETE operations for transforming \(s_1 \) to \(s_2 \)
 - \(\text{MEDR} \)

\[
\text{MEDR}(s_1, s_2) = 1 - \frac{\text{MED}(s_1, s_2)}{\max(|s_1|, |s_2|)}
\]

- MEDR is also known as *normalized edit distance* (NED)
Step 1: Finding Candidate Cognates

Orthographic Similarity: MMEDR

- Modified Minimum Edit Distance Ratio (MMEDR) for Bulgarian / Russian
 1. Transliterate from Russian to Bulgarian
 2. Lemmatize
 3. Replace some Bulgarian letter-sequences with Russian ones (e.g. strip some endings)
 4. Assign weights to the edit operations
Step 1: Finding Candidate Cognates

The MMEDR Algorithm

- Transliterate from Russian to Bulgarian
 - Strip the Russian letters "Ъ" and "ѣ"
 - Replace "э" with "е", "ы" with "и", ...

- Lemmatize
 - Replace inflected wordforms with their lemmata
 - Optional step: performed or skipped

- Replace some letter-sequences
 - Hand-crafted rules
 - Example: remove the definite article in Bulgarian words (e.g. "ът", "ят")
Step 1: Finding Candidate Cognates

The MMEDR Algorithm (2)

- Assign weights to the edit operations:
 - 0.5-0.9 for vowel to vowel substitutions, e.g. 0.5 for е \rightarrow о
 - 0.5-0.9 for some consonant-consonant substitutions, e.g. с \rightarrow з
 - 1.0 for all other edit operations

- MMEDR Example: the Bulgarian първият and the Russian первый (first)
 - Previous steps produce първи and перви, thus MMED = 0.5 (weight 0.5 for ъ \rightarrow о)
Step 2: Distinguishing between Cognates and False Friends
Method

Our method for false friends extraction from parallel bi-text works in two steps:

1. Find candidate cognates / false friends
 - Modified orthographic similarity measure

2. Distinguish cognates from false friends
 - Sentence-level co-occurrences
 - Word alignment probabilities
 - Web-based semantic similarity
 - Combined approach
Sentence-Level Co-occurrences

- Idea: cognates are likely to co-occur in parallel sentences (unlike false friends)
- Previous work - Nakov & Pacovski (2006):
 - \(#(w_{bg}) \) – the number of Bulgarian sentences containing the word \(w_{bg} \)
 - \(#(w_{ru}) \) – the number of Russian sentences containing the word \(w_{ru} \)
 - \(#(w_{bg}, w_{ru}) \) – the number of aligned sentences containing \(w_{bg} \) and \(w_{ru} \)

\[
F_6(w_{bg}, w_{ru}) = \frac{#(w_{bg}, w_{ru}) + 1}{\max \left(\frac{#(w_{bg})+1}{#(w_{ru})+1}, \frac{#(w_{ru})+1}{#(w_{bg})+1} \right)}
\]
New Formulas for Sentence-Level Co-occurrences

New formulas for measuring similarity based on sentence-level co-occurrences

\[E_1(w_{bg}, w_{ru}) = \frac{(\#(w_{bg}, w_{ru}) + 1)^2}{(\#(w_{bg}) + 1)(\#(w_{ru}) + 1)} \]

\[E_2(w_{bg}, w_{ru}) = \frac{(\#(w_{bg}, w_{ru}) + 1)^2}{P \times Q} \]

where

\[P = \#(w_{bg}) - \#(w_{bg}, w_{ru}) + 1 \]

\[Q = \#(w_{ru}) - \#(w_{bg}, w_{ru}) + 1 \]
Method

- Our method for false friends extraction from parallel bi-text works in two steps:

 1. Find candidate cognates / false friends
 - Modified orthographic similarity measure

 2. Distinguish cognates from false friends
 - Sentence-level co-occurrences
 - **Word alignment probabilities**
 - Web-based semantic similarity
 - Combined approach
Word Alignments

- Measure the semantic relatedness between words that co-occur in aligned sentences
 - Build directed word alignments for the aligned sentences in the bi-text
 - Using IBM Model 4
 - Average the translation probabilities \(\Pr(W_{bg}|W_{ru}) \) and \(\Pr(W_{bg}|W_{ru}) \):

 \[
 \text{lex}(w_{bg}, w_{ru}) = \frac{\Pr(w_{bg}|w_{ru}) + \Pr(w_{ru}|w_{bg})}{2}
 \]
 - Drawback: words that never co-occur in corresponding sentences have \(\text{lex} = 0 \)
Our method for false friends extraction from parallel bi-text works in two steps:

1. Find candidate cognates / false friends
 - Modified orthographic similarity measure

2. Distinguish cognates from false friends
 - Sentence-level co-occurrences
 - Word alignment probabilities
 - Web-based semantic similarity
 - Combined approach
Web-based Semantic Similarity

- What is *local context*?
 - Few words before and after the target word

 Same day delivery of fresh **flowers**, roses, and unique gift baskets from our online **boutique**. **Flower delivery** online by local florists for **birthday** **flowers**.

- The words in the local context of a given word are semantically related to it

- Need to exclude *stop words*: prepositions, pronouns, conjunctions, etc.
 - Stop words appear in all contexts

- Need for a sufficiently large corpus
Web-based Semantic Similarity (2)

- **Web as a corpus**
 - The Web can be used as a corpus to extract the local context for a given word
 - The Web is the largest available corpus
 - Contains large corpora in many languages
 - A query for a word in Google can return up to 1,000 text snippets
 - The target word is given along with its local context: few words before and after it
 - The target language can be specified
Web-based Semantic Similarity (3)

- Web as a corpus
 - Example: Google query for "flower"

| Flowers, Plants, Gift Baskets - 1-800-FLOWERS.COM - Your Florist ... |
| Flowers, balloons, plants, gift baskets, gourmet food, and teddy bears presented by 1-800-FLOWERS.COM, Your Florist of Choice for over 30 years. |
| Margarita Flowers - Delivers in Bulgaria for you! - gifts, flowers, roses ... |
| Wide selection of BOUQUETS, FLORAL ARRANGEMENTS, CHRISTMAS ECORATIONS, PLANTS, CAKES and GIFTS appropriate for various occasions. CREDIT cards acceptable. |
| Flowers, plants, roses, & gifts. Flowers delivery with fewer ... |
| Flowers, roses, plants and gift delivery. Order flowers from ProFlowers once, and you will never use flowers delivery from florists again. |
Web-based Semantic Similarity (4)

- Measuring semantic similarity
 - Given two words, their local contexts are extracted from the Web
 - A set of words and their frequencies
 - Lemmatization is applied
 - Semantic similarity is measured using these local contexts
 - Vector-space model: build frequency vectors
 - Cosine: between these vectors
Web-based Semantic Similarity (5)

- Example of contextual word frequencies

<table>
<thead>
<tr>
<th>word</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>fresh</td>
<td>217</td>
</tr>
<tr>
<td>order</td>
<td>204</td>
</tr>
<tr>
<td>rose</td>
<td>183</td>
</tr>
<tr>
<td>delivery</td>
<td>165</td>
</tr>
<tr>
<td>gift</td>
<td>124</td>
</tr>
<tr>
<td>welcome</td>
<td>98</td>
</tr>
<tr>
<td>red</td>
<td>87</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>word</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>291</td>
</tr>
<tr>
<td>PC</td>
<td>286</td>
</tr>
<tr>
<td>technology</td>
<td>252</td>
</tr>
<tr>
<td>order</td>
<td>185</td>
</tr>
<tr>
<td>new</td>
<td>174</td>
</tr>
<tr>
<td>Web</td>
<td>159</td>
</tr>
<tr>
<td>site</td>
<td>146</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Web-based Semantic Similarity (6)

- Example of frequency vectors

<table>
<thead>
<tr>
<th>v1: flower</th>
<th>v2: computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>word</td>
</tr>
<tr>
<td>0</td>
<td>alias</td>
</tr>
<tr>
<td>1</td>
<td>alligator</td>
</tr>
<tr>
<td>2</td>
<td>amateur</td>
</tr>
<tr>
<td>3</td>
<td>apple</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>4999</td>
<td>zap</td>
</tr>
<tr>
<td>5000</td>
<td>zoo</td>
</tr>
</tbody>
</table>

- Similarity = \text{cosine}(v_1, v_2)
Web-based Semantic Similarity:
Cross-Lingual Semantic Similarity

- Given
 - two words in different languages L_1 and L_2
 - a bilingual glossary G of known translation pairs
 \[\{ p \in L_1, q \in L_2 \} \]

- Measure cross-lingual similarity as follows
 1. Extract the local contexts of the target words from the Web: $C_1 \in L_1$ and $C_2 \in L_2$
 2. Translate the local context $C_1 \xrightarrow{G} C_1^*$
 3. Measure the similarity between C_1^* and C_2
 - vector-space model
 - cosine
Our method for false friends extraction from parallel bi-text works in two steps:

1. Find candidate cognates / false friends
 - Modified orthographic similarity measure

2. Distinguish cognates from false friends
 - Sentence-level co-occurrences
 - Word alignment probabilities
 - Web-based semantic similarity
 - Combined approach
Combined Approach

- **Sentence-level co-occurrences**
 - Problems with infrequent words

- **Word alignments**
 - Work well only when the statistics for the target words are reliable
 - Problems with infrequent words

- **Web-based semantic similarity**
 - Quite reliable for unrelated words
 - Sometimes assigns very low scores to highly-related word pairs
 - Works well for infrequent words

- **We combine all three approaches by adding up their similarity values**
Experiments and Evaluation
Evaluation: Methodology

- We extract all pairs of cognates / false friends from a Bulgarian-Russian bi-text:
 - $\text{MMEDR}(w_1, w_2) > 0.90$
 - 612 pairs of words: 577 cognates and 35 false friends

- We order the pairs by their similarity score according to 18 different algorithms

- We calculate 11-point interpolated average precision on the ordered pairs
Resources

- **Bi-text**
 - The first seven chapters of the Russian novel "Lord of the World" + its Bulgarian translation
 - Sentence-level aligned with MARK ALISTeR (using the Gale-Church algorithm)
 - 759 parallel sentences

- **Morphological dictionaries**
 - Bulgarian: 1M wordforms (70,000 lemmata)
 - Russian: 1.5M wordforms (100,000 lemmata)
Resources (2)

- **Bilingual glossary**
 - Bulgarian / Russian glossary
 - 3,794 pairs of translation words
- **Stop words**
 - A list of 599 Bulgarian stop words
 - A list of 508 Russian stop words
- **Web as a corpus**
 - Google queries for 557 Bulgarian and 550 Russian words
 - Up to 1,000 text snippets for each word
Algorithms

- BASELINE – word pairs in alphabetical order
- COOC – the sentence-level co-occurrence algorithm with formula F6
- COOC+L – COOC with lemmatization
- COOC+E1 – COOC with the formula E1
- COOC+E1+L – COOC with the formula E1 and lemmatization
- COOC+E2 – COOC with the formula E2
- COOC+E2+L – COOC with the formula E2 and lemmatization
- WEB+L – Web-based semantic similarity with lemmatization
- WEB+COOC+L – average of WEB+L and COOC+L
- WEB+E1+L – average of WEB+L and E1+L
- WEB+E2+L – average of WEB+L and E2+L
- WEB+SMT+L – average of WEB+L and translation probability
- COOC+SMT+L – average of COOC+L and translation probability
- E1+SMT+L – average of E1+L and translation probability
- E2+SMT+L – average of E2+L and translation probability
- WEB+COOC+SMT+L – average of WEB+L, COOC+L and translation probability
- WEB+E1+SMT+L – average of WEB+L, E1+L, and translation probability
- WEB+E2+SMT+L – average of WEB+L, E2+L and translation probability
Results

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>11-pt Average Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASELINE</td>
<td>4.17%</td>
</tr>
<tr>
<td>E2</td>
<td>38.60%</td>
</tr>
<tr>
<td>E1</td>
<td>39.50%</td>
</tr>
<tr>
<td>COOC</td>
<td>43.81%</td>
</tr>
<tr>
<td>COOC+L</td>
<td>53.20%</td>
</tr>
<tr>
<td>COOC+SMT+L</td>
<td>56.22%</td>
</tr>
<tr>
<td>WEB+COOC+L</td>
<td>61.28%</td>
</tr>
<tr>
<td>WEB+COOC+SMT+L</td>
<td>61.67%</td>
</tr>
<tr>
<td>WEB+L</td>
<td>63.68%</td>
</tr>
<tr>
<td>E1+L</td>
<td>63.98%</td>
</tr>
<tr>
<td>E1+SMT+L</td>
<td>65.36%</td>
</tr>
<tr>
<td>E2+L</td>
<td>66.82%</td>
</tr>
<tr>
<td>WEB+SMT+L</td>
<td>69.88%</td>
</tr>
<tr>
<td>E2+SMT+L</td>
<td>70.62%</td>
</tr>
<tr>
<td>WEB+E2+L</td>
<td>76.15%</td>
</tr>
<tr>
<td>WEB+E1+SMT+L</td>
<td>76.35%</td>
</tr>
<tr>
<td>WEB+E1+L</td>
<td>77.50%</td>
</tr>
<tr>
<td>WEB+E2+SMT+L</td>
<td>78.24%</td>
</tr>
</tbody>
</table>
Conclusion and Future Work
Conclusion

- We improved the accuracy of the best known algorithm by nearly 35%.

- Lemmatization is a must for highly inflectional languages like Bulgarian and Russian.

- Combining multiple information sources works much better than any individual source.
Future Work

- Take into account the part of speech
 - e.g. a verb and a noun cannot be cognates
- Improve the formulas for the sentence-level approaches
- Improved Web-based similarity measure
 - e.g. only use context words in certain syntactic relationships with the target word
- New resources
 - Wikipedia, EuroWordNet, etc.
 - Large parallel bi-texts as a source of semantic information
Thank you!

Questions?