
Cha-Cha:

A System for Organizing Intranet Search Results

Michael Chen∗ Marti Hearst† Jason Hong∗ James Lin∗

∗Computer Science Department †School of Information Management & Systems
445 Soda Hall 102 South Hall

University of California, Berkeley University of California, Berkeley
Berkeley, CA 94720-1776 Berkeley, CA 94720-4600

{mikechen,jasonh,jimlin}@cs.berkeley.edu hearst@sims.berkeley.edu
http://www.cs.berkeley.edu/˜mikechen http://www.sims.berkeley.edu/˜hearst

Abstract

Although search over World Wide Web pages has
recently received much academic and commercial
attention, surprisingly little research has been done
on how to search the web pages within large, diverse
intranets. Intranets contain the information associ-
ated with the internal workings of an organization.

A standard search engine retrieves web pages that
fall within a widely diverse range of information
contexts, but presents these results uniformly, in a
ranked list. As an alternative, the Cha-Cha system
organizes web search results in such a way as to re-
flect the underlying structure of the intranet. In our
approach, an “outline” or “table of contents” is cre-
ated by first recording the shortest paths in hyper-
links from root pages to every page within the web
intranet. After the user issues a query, these short-
est paths are dynamically combined to form a hier-
archical outline of the context in which the search
results occur. The system is designed to be help-
ful for users with a wide range of computer skills.
Preliminary user study and survey results suggest
that some users find the resulting structure more
helpful than the standard retrieval results display
for intranet search.

1 INTRODUCTION

Although search over World Wide Web pages has
recently received much academic and commercial
attention, surprisingly little research has been done
on how to search the web pages within large, diverse
intranets. Intranets contain the information associ-

ated with the internal workings of an organization.

Most web site search engines present search re-
sults as a ranked list of titles and metadata such as
URLs and file size. The context in which the pages
exist, and their relationships to one another, cannot
be discerned from such a display. Figure 1 shows an
example of a list view returned as a result of a query
on “earthquake” using a commercial search engine
within our university’s web site. From this view, it
is difficult to tell what the relationships are among
the different search hits.

As a remedy, many authors have called for an or-
ganization to be imposed on the Web. Directory
services such as Yahoo organize web pages accord-
ing to pre-defined topics. Although such topics are
often intuitive, this approach does not scale well be-
cause the web pages are assigned to categories man-
ually. Furthermore, most web directories only cover
organizations’ home pages; standard search engines
must be used if the user wants to find information
within an intranet.

By contrast, we are interested in organizing the
hits returned as the result of queries within large,
heterogeneous intranets, such as those found at uni-
versities, corporations, and other large institutions.
These sites are often quite complex, consisting of
a wide variety of document genres, including home
pages, product information, policy statements, re-
search reports, current events, and news.

Grouping of retrieved documents may be espe-
cially important when the user has issued a very
short or vague query (user queries tend to consist of
only a few words [19, 7]). Short queries often return
a heterogeneous set of documents that cover a wide



Figure 1: A list view of a commercial search engine on the query “earthquake” within the UC Berkeley
intranet.



range of topics. In this situation, retrieval results
should suggest the kinds of information available
and guide the user to appropriate starting points
(such as servers within an intranet).

We have developed a system called Cha-Cha
whose goal is to provide fast, well-organized search
results for queries within web intranets.1 Cha-Cha
imposes an organization on web site search results
by recording the shortest paths, in terms of hy-
perlinks, from server root pages to every web page
within the intranet. After the user issues a query,
these shortest paths are dynamically combined to
form a hierarchical outline of the context in which
the search results occur. This outline structure
shows the home pages of the servers on which the
search hits occur, as well as the titles of the hyper-
links between the home pages and the search hit.

Figure 2 shows an example on the query “earth-
quake” within our university’s web pages. Note
that the interface tightly couples the specification
of search with navigation of available hyperlinks.

The top levels of the hierarchy typically identify
the servers that the search hits reside on. In this
figure, the top levels visible are those associated
with a national earthquake center (located on cam-
pus), an educational unit on earthquakes (located
with a science education site, also on campus), and
earthquake research within the campus civil engi-
neering department. The organization pulls out the
home pages associated with the search hits, provid-
ing not only context in which to embed the hits, but
also conveniently indicating the higher level starting
points for each subcollection of documents.

We designed the system to make the interface use-
able by all members of the community, even those
with slow computers, low bandwidth connections,
and old versions of web browsers. For this reason
we use standard HTML and we keep the number
of graphics low [26]. We also wanted the interface
to look as familiar as possible while still providing
added functionality, given research results showing
that users do not like to switch to unfamiliar inter-
faces [21]. We have found that the outline metaphor
is familiar enough that users understand the inter-
face rapidly.

The functional goals of the system are to (1) help
users better understand the scope of their search re-
sults, (2) find useful information more quickly than
with a standard view, and (3) learn about the struc-
ture of the web site. A major assumption behind

1The name Cha-Cha stands for Contextualized Hierarchi-
cal information Access by Chen, Hearst, and Associates. The
system can be found at http://cha-cha.berkeley.edu

this research is that the shortest path of links from
a root page to a target web page is meaningful to
users. Our subjective experience with the use of
this display, and especially in comparison with in-
terfaces that show no context, is that the shortest
path information is indeed a useful, coherent way
to group the search results. This result is less sur-
prising when taking into account the fact that most
hyperlinks are created deliberately by human au-
thors of web pages, who often organize pages into
topics.

The remainder of this paper discusses related
work, details about the system implementation, and
user assessments of the interface.

2 RELATED WORK

This work is closely related to that of SuperBook
[9], which demonstrated that showing hit search re-
sults in the context of the chapters and sections
of the manual from which they are drawn can im-
prove users’ information access experiences. The
AMIT system [30] indexed a web site covering a spe-
cific topic (sailing) in a similar manner, providing
a Superbook-like focus-plus-context environment to
place search results in context. To our knowledge
this system has not been evaluated nor extended
to a large heterogeneous web site. The WebTOC
system [25] imposes static hierarchical table of con-
tents over a single web site, but focuses on showing
the number of pages within a subdirectory and does
not integrate the results of search into the outline
view. The examples explored for both AMIT and
WebTOC were well-structured single web site pro-
totypes organized around a topic (sailing and mu-
seum exhibits, respectively).

Cha-Cha demonstrates the application of the idea
across a very large, heterogeneous web site that is an
order of magnitude larger than those used by these
other systems, and is used operationally by thou-
sands of users. Many difficult system-level problems
had to be solved to make this approach scale, both
because of the larger size of the dataset and the
greater heterogeneity in the search results. Cha-
Cha also resolves graph-merging issues that these
other systems do not address.

A major problem with WebTOC, along with
other attempts to provide categorical access to in-
formation (such as Yahoo), is that they do not cou-
ple navigation with ad hoc search (see [1, 12] for
more discussion of this point). A navigate-only in-
terface to a large text collection forces the user to
contend with the entire contents of the site at once.



Figure 2: The outline view of the current implementation of Cha-Cha search on the query “earthquake” .



Many web sites show site maps which suffer from
the same limitation. Users can browse or navigate
the structure of the site, but cannot search within
or across that structure.

The WebGlimpse system [22] provides crawling
and indexing of an intranet (both local and exter-
nal links). It also allows system administrators to
define link “neighborhoods” in one of two ways: all
pages within k links of a given page, or all pages
within a file system subdirectory. (We explored this
approach in Cha-Cha but found hyperlink path con-
text to be more intuitive than subdirectory paths.)
During search, neighborhood information in Web-
Glimpse is used only to restrict the set of pages that
a search is conducted on; it is not used to show the
context of the search results. By contrast, Cha-Cha
allows search over many different neighborhoods si-
multaneously, showing in the search results a sum-
mary of which neighborhoods the search hits fall
into.

The Connectivity Server [3] determines all inlink
and outlink information for a given URL across the
entire Web. This can be a useful component for a
system that ranks pages according to “popularity”
as suggested by inlink information (as in Kleinberg
et al.’s “authority pages” [15] or the Google sys-
tem [4]). The authors envision this as a method for
viewing the Internet “neighborhood” of a given web
page, but do not use the link information to provide
context for search results. Furthermore, because re-
sults are shown in terms of their relationship to the
entire Web, context within a given intranet is not
provided.

The WebCutter system [20] (now called Mapuc-
cino) allows the user to issue a query on a partic-
ular web site. The system crawls the site in real
time, checking each encountered page for relevance
to the query. When a relevant page is found, the
weights on that page’s outlinks are increased. The
subset of the web site that has been crawled is de-
picted graphically in a nodes-and-links view. Other
researchers have also investigated spreading activa-
tion among hypertext links as a way to guide an
information retrieval system [10, 24].

The emphasis of these systems is on the dynamic
crawling of the web sites. Unfortunately, this kind
of display does not provide the user with informa-
tion about what the contents of the pages are, but
rather only shows their link structure. This is in
contrast with Cha-Cha which retrieves all search
hits at once, whether or not they are close to a
starting point. Cha-Cha also emphasizes the dis-
play of the contents in a readable form, as previous

Figure 3: The architecture for the off-line indexing
components of Cha-Cha.

research indicates that users find this more helpful
than nodes-and-links views [14, 28].

3 SYSTEM IMPLEMENTA-
TION

The Cha-Cha system has two main parts: an off-
line indexing component in which the web site is
crawled and the metadata and indexes are gener-
ated, and an on-line query processing component
in which the system receives and responds to user
requests. Figures 3 and 4 illustrate the two main
components of the architecture; all code is written
in Java unless otherwise noted.

The indexing component has three main phases:
the web crawler, the metafile generator, and the
indexer (see Figure 3). The web crawler stores a
mirror of the intranet’s web pages on its local file
system. The metafile generator processes these files
to precompute shortest path information and other
meta-information, storing the metadata on the local
file system. The indexer converts the metadata and
the text into an inverted index to be used by the
search engine backend, the Cheshire II system [18].
Each of these components is discussed in detail be-
low, followed by a discussion of the query processing
component.

3.1 The Web Crawler

In order to ensure thorough web coverage and to
create the necessary metadata, we have written a
custom web crawler. To uniquely identify each site,
we record the MD5 hash2 of the root page of each

2http://www.ietf.org/rfc/rfc1321.txt



host name found. If the root page of a new host has
the same hash as a previous host, then the new host
name is mapped to the previously known name in
all URLs subsequently encountered [8]. This tech-
nique eliminates duplicates caused by host name
aliases, DNS round-robin, virtual hosts, and unique
servers that mount the same web pages at the root
level. A global breadth-first search algorithm is
used to order the URLs [5], and a page is retried
for up to three times if errors are encountered dur-
ing retrieval. Dynamically generated pages are not
crawled.

The web crawler is given a list of URLs
from which to start (e.g., the home page at
www.berkeley.edu). The crawler is restricted to fol-
lowing links that fall only within a set of domains
(e.g., all of *.berkeley.edu), while obeying the robots
exclusion standard.3 The crawler mirrors the full
text of the web pages onto disk. This is needed
to allow for extraction of sentences for page sum-
maries.

3.2 The Metafile Generator

After the web pages are recorded, the metafile gen-
erator extracts hyperlink relationships. It begins at
the root page of the main server. The HTML of
the current page is parsed and all the outlinks to
pages that have not yet been processed are placed
on a queue. The system stores information about
the page in a disk-based storage system.4 This in-
formation includes a count of the shortest distance
found so far from the root to the page, along with
the corresponding shortest path(s). Then the next
page is taken off the top of the queue and the pro-
cess repeats until the queue is empty. If later in
this process a page is encountered again, and was
reached via a shorter path than before, the database
entry for the page is updated to reflect the shorter
path. Pages are allowed to contain multiple shortest
paths (of equal length). Simple algorithms are used
to assign categories such as personal home page and
department home page, which can later be used as a
search criteria. The metafile generator also records
the title, domain, URL, page length, date last mod-
ified (if available), inlinks and outlinks.

In the initial implementation of the system, the
root node was the home page of our institution,
and all shortest paths were generated relative to
this root page. However, this approach can produce

3http://info.webcrawler.com/mak/projects/robots/
norobots.html

4Written in C, see http://www.sleepycat.com.

misleading results, because sometimes the shortest
path within a local subdomain is more meaning-
ful than the shortest path computed globally or the
entire intranet. (A related idea is discussed by Ter-
veen and Hill [29].) To remedy this problem, we
have implemented a variation of the algorithm that
combines local and global shortest path information.
This allows the shortest path information to be or-
ganized more modularly.

To make use of both local and global informa-
tion, a two-pass scheme is used for metafile gener-
ation. First, shortest paths are computed within
each logical domain, starting from the root page
associated within the local logical domain. Then,
global shortest paths are computed in the same way,
beginning with the home page of the entire organi-
zation. Whenever a page is found using the global
pass that has not yet been encountered in any of
the local passes, this page and its shortest paths are
added to the metafile database. This second pass
finds “orphan” pages that might have been missed
by the local passes, but gives priority to shortest
paths found locally.

The two-phase approach trades file reading time
for simplicity, as files have to be read and parsed
twice. This inefficiency can be removed by keeping
track of both global and local paths simultaneously
for each page. The time to generate the metafiles
for a 200K collection is currently less than 5 hours,
which is adequate for our institution.

3.3 The Indexer

The search engine backend is the Cheshire II sys-
tem [18], (written in C). This system creates an in-
verted index [2] based on the full text of the pages
and attribute information found in the metadata
files. Cheshire II works with SGML markup. Af-
ter reading in a Document Type Definition (DTD)
[27] describing the format of the metafiles, the sys-
tem creates indexes that provide efficient access to
search terms embedded within the full text, titles,
and other forms of metadata.

3.4 Query Processing and the User
Interface

Because studies show that many users are reluctant
to switch from familiar to unfamiliar interfaces and
systems, one of our principle design goals to was
to create an interface as similar as possible to the
status quo, while providing added functionality.

Users access the system via a web browser that
communicates with the Cha-Cha frontend, which is



Figure 4: The architecture for the on-line (interac-
tive) query processing components of Cha-Cha.

a Java servlet hosted on an Apache server.5 (See
Figure 4, step 1.) The Cha-Cha frontend formats
the user query and sends it to the Cheshire II back-
end (step 2). The frontend requests the metadata
for the first k hits, where currently k is set to 25.
The output of queries are ranked using a proba-
bilistic algorithm [6]. The two-tier design will allow
us in future to use load-balancing techniques across
several servers so the system can scale well.

The user can place the interface into one of two
modes: list mode or outline mode. If list mode is
selected, the system creates an HTML page contain-
ing the titles, summaries, page size, date, and URL
for the first k hits (step 3). The page also shows
the total number of hits for the query. If there were
more than k hits for the query, hyperlinks are shown
at the top and bottom of the page indicating that
more pages of search hits are available. Titles are
hyperlinked to the actual pages to which they refer.

If outline mode is selected, the system builds up
a hierarchy from the shortest paths associated with
each of the k hits (step 4; how this is done is de-
scribed below). The outline layout is placed into
two frames; the first acts as a “table of contents”
or a “category hierarchy.” This outline view is gen-
erated by recursively traversing the hierarchy data
structure and generating HTML (step 5). Small
icons are associated with the titles of search hits.
These icons, if clicked, bring up a display of the doc-
ument summary in the righthand frame. The titles
within the table of contents (search hits as well as
their contextualizing information) are hyperlinked
to the actual web pages to which they refer. Fi-
nally, the HTML pages are displayed in the user’s
client browser (step 6).

5http://www.apache.org

3.5 The Page Summaries

There is strong evidence that highlighting query
terms in the context in which they occur in the
page helps user determine why the document was
retrieved and how it might be relevant to their in-
formation need [17, 23].

The keyword-in-context (KWIC) summaries con-
sist of a sentence extracted from the beginning of
the document followed by up to three sentences con-
taining search terms. The search terms themselves
are shown in boldface. Figure 5 shows an example
on the query “contact lens”. If the query consists of
q different terms, sentences containing all q are fa-
vored over those with fewer, failing these, sentences
containing q−1 are favored, etc. In the case of ties,
sentences from the beginning of the document are
favored over those found later. To help retain coher-
ence of the excerpts, selected sentences are always
shown in order of their occurrence in the original
document, independent of how many search terms
they contain.

3.6 The Graph Merging Algorithm

After all of the shortest paths have been found, they
are used to build a hierarchy, starting from the root,
in which common paths are merged together. This
merging is partly responsible for the grouping and
compression of search results.

As noted above, there is often more than one
shortest path to any particular search hit. This
means that a graph built from all of the shortest
paths is a directed acyclic graph (DAG). We choose
to show search hits only once within the hierarchy
in order to reduce the amount of extra information
presented to users, and because we suspect that see-
ing the same page in two locations in the hierarchy
will be more confusing than helpful. We also as-
sume that it is better to group many related hits
together within one subhierarchy, if possible, rather
than scattering the same set of hits across many
different subhierarchies. This assumption is based
on the results of our empirical work which showed
that documents relevant to a query tend to fall into
the same one or two clusters when text clustering
is employed [13]. In general, grouping related docu-
ments together seems to facilitate rapid discarding
of non-relevant groups [11].

Although we do not use clustering for comput-
ing similarity here, we assume that a human author
groups pages together via hyperlinks because they
are similar to one another in some sense. Thus hy-
perlink structure can provide a kind of supervised



Figure 5: Examples of keyword-in-context summaries.

similarity metric that document clustering attempts
to uncover in an unsupervised manner. The hyper-
link structure has the added advantage of human-
understandable labels (in the form of the page ti-
tles) and a uniform granularity of detail, both of
which are lacking in clustering algorithms [11].

Based on these assumptions, the layout has the
following goals (assuming that search hits are leaves
in the final hierarchy).

(i) Group (recursively) as many pages together
within a subhierarchy as possible; avoid (re-
cursively) branches that terminate in only one
hit (leaf).

(ii) Remove as many internal nodes as possible
while still retaining at least one path to every
leaf.

(iii) Remove as many edges as possible while still
retaining at least one path to every leaf.

Items (ii) and (iii) are based on the assumption that
the fewer levels of the hierarchy shown the better,
since pilot studies suggest users prefer to have less
extra information rather than more.

These desiderata require a non-standard graph
algorithm6 whose goal is to find the smallest subset

6Minimum spanning tree is inappropriate because internal
nodes, as well as edges, are to be eliminated. A depth-first
traversal in which the counts of the leaves are propagated
up does not work because the graph is a DAG: If node N
has two internal node children N1 and N2 and they both

of nodes that covers all the nodes one level below.7

To do this correctly, every possible subset of nodes
at depth D should be considered to determine the
minimal subset which covers all the nodes at depth
D + 1. However, this would require 2k checks if
there are k nodes at depth D. Instead, a heuristic
approach is used.

The main idea is to order nodes at each depth ac-
cording to how many children they have and elimi-
nate those nodes that do not uniquely cover nodes
at the depth below them.

First, a top-down pass determines the depth of
each node and the number of children it links to
one level below. Next a bottom-up pass works from
the deepest nodes (the leaves) up to the root. In
other words, say the current deepest level is D+ 1.
The nodes at level D are sorted in ascending order
according to how many active children they link to
at depth D + 1. A node is active if it has not been
eliminated in a previous step.

Every non-leaf node at level D is a candidate for
elimination from the final graph. Those candidates
with the least number of children are examined for
potential to be eliminated first, because of goal (i).
For each candidate C, if C links to one or more ac-

point to leaf L, N will be assigned an erroneous count of two
children in such a traversal.

7To obtain a truly optimal result the algorithm should
optimize elimination of nodes and edges at all levels of the
hierarchy, not just between one level and the next. There is
at least one case in which the heuristic approach using only
one level at a time yields a suboptimal result, but in practice
this kind of situation seems to occur only rarely.



tive nodes at depth D + 1 that are not covered by
any of the other active candidates, then C cannot
be eliminated. Otherwise C is removed from the
active nodes list for depth D. After a level is com-
plete, there are no active nodes at depth D that
cover only nodes that are also covered by another
active node at D. This procedure continues recur-
sively up to the root. It works despite the DAG
structure because the edges used correspond only
to shortest paths at every level. The running time
is order (k log k) + 2k for each level, instead of 2k.
Figure 6 shows the pseudocode for the main loops
of the algorithm.

mergeShortestPaths(paths) {

init();

NodesAtDepth[] =

findShortestPathDepths(paths);

pruneNodes(NodesAtDepth);

return(buildPathTreeFromNodes());

}

pruneNodes(NodesAtDepth[]) {

Vector tobeCov, candidates;

for(int d = MaxDepth-1; d>0; d--) {

tobeCov = NodesAtDepth[d];

candidates = NodesAtDepth[d-1];

NodesAtDepth[d-1] =

getCovering(tobeCov, candidates);

}

}

Figure 6: Pseudocode for the main loops of the
graph merging algorithm.

After nodes have been eliminated, the hierarchy
must be built up while still attempting to retain the
rank ordering from the search engine. This is ac-
complished as follows. The leaf nodes (search hits)
are sorted in ascending order according to their rank
in the search results (a rank of 1 means the best-
ranked hit). Beginning with an empty tree and the
first hit, a path is found from that hit through the
active nodes at each level above it to the root. The
path must travel through edges from the original
set of shortest paths. The parent with the largest
number of still active children is chosen, in order to
help achieve goal (i). When the root is reached, a
new path has been created; this path becomes the
beginning of the output tree. This procedure is re-
peated with the rest of the search hits in ranked
order, with an added check: when selecting a par-

ent, if one of the parent choices is already in the
final tree, chose that over other parent choices (to
help achieve goal (ii)).

The tree is converted to an HTML hierarchy by
traversing it in a depth-first manner. The choice
of which sibling to traverse next is determined by
the order in which the siblings were entered into the
tree. Thus the rank ordering is preserved as much
as possible while still grouping search hits together
within subhierarchies.

3.7 System Status

Cha-Cha has been available from our institution’s
home page since August 1998, receiving on average
approximately 3000 queries per weekday during the
school year. During a one week period, for 17831
queries, the outline view was used 16006 times for
14330 unique IP addresses. (Since the outline view
is the default setting we cannot assume that peo-
ple deliberately choose this view.) Our target re-
sponse time was 3 seconds per query on average.
We achieved this goal; for 17831 queries run dur-
ing one week in August, the average time required
by the system was 3.02 seconds running on a Sparc
Ultra II. The search engine backend took 2 seconds
on average while the Java frontend took 1 second.
More recently we have obtained a Sun Enterprise
450. For 65440 queries during the month of July,
1999, the average time was 2.4 seconds/query. The
current index covers more than 200,000 web pages
and several groups within our institution are using
Cha-Cha to search over their site’s pages. All that
is needed to enable this facility is the customization
of a short HTML form.

4 USER ASSESSMENTS

As mentioned above, the functional goals of the sys-
tem are to help users better understand the scope
of their search results, find useful information more
quickly than with a standard view, and learn about
the structure of the web site. These are all difficult
to evaluate empirically [16]. Below we describe a
pilot study that attempts to assess some of these
factors, a follow-up user study, and the results of
a survey intended to uncover user preference infor-
mation.

4.1 A Pilot Study

To assess the relative merits of the system we con-
ducted a pilot study followed by a full study. The



Question Yes No NA
1. I often find the outline view helpful. 56 31 75
2. I often find the outline view confusing. 37 49 76
3. The outline view sometimes helps me find information that 57 30 75

a standard search engine does not.
4. The outline view introduces unnecessary clutter. 37 51 78
5. The outline view would be better if it showed less information. 33 51 78
6. I usually prefer the list view with the summaries over the outline view. 42 39 81
7. I usually prefer the Cha-Cha outline view to standard search engine 35 44 83

results listings.

Table 1: Responses of 162 survey participants on questions about Cha-Cha in particular.

pilot study used an earlier version of the system
on a smaller data set (about 10,000 pages). Seven
people participated and four versions of the inter-
face were compared. The participants had not used
Cha-Cha prior to the study, and had no training on
the interfaces.

The results showed that participants were able to
understand a version of the outline view and found
it easy to use. When participants were timed on
eight question-answering tasks, the average time for
outline view was 72.4 seconds/query while for the
list view it was 99.7 seconds/query. Due to the small
nature of the study, these results are only sugges-
tive.

4.2 Follow-up Study

We conducted a more extensive user study on a later
version of the system with a larger number of pages
(about 100,000), but with inferior path structure,
because the local/global distinction had not yet
been implemented. This study involved 18 partici-
pants, 9 males and 9 females, from a wide range of
undergraduate majors (one participant was a grad-
uate student). The study compared only the outline
view and the enhanced KWIC list view. This ver-
sion of the list view contains more information than
a standard web search engine, showing an abstract
containing keywords in the context in which they
occur in the web page, rather than just the first one
or two sentences of the web page.

Study participants scored the two views on the
question “How often would you use this interface
if it were available” on a scale from 1 (never) to 7
(often). The outline view received an average score
of 4.6 while the list view received a score of 4.9
(differences were not significant). However, when
participants were timed on eight question-answering
tasks, the average time for outline view was 109
seconds/query while for the list view it was 120 sec-

onds/query (again, differences were not significant).

4.3 Survey Results

To attempt to measure preference information, a
survey was recently placed on the home page for
our institution, inviting the user community to ex-
press opinions about the usability of Cha-Cha and
a commercial search engine, both of which provide
search over the UC Berkeley web pages.

Because those people who choose to answer
the survey are somewhat self-selected, the results
should be considered to come from a biased sam-
ple. Nevertheless, the results should provide useful
ballpark estimates on perceived usability and user
preference. After several weeks, 162 responses were
gathered. 96 responses were from UCB undergrad-
uates (apparently; this was the default choice), 23
were from UCB Staff, 10 were UCB graduate stu-
dents, with the remaining 33 from other categories.

Respondents were asked if they had to choose be-
tween Cha-Cha and the commercial search engine,
which would they prefer. 38 respondents preferred
Cha-Cha, 21 preferred the commercial engine, 61
marked no opinion, and 42 made no choice at all.
Thus, of those who expressed an opinion of one sys-
tem over the other, 64% preferred Cha-Cha. Bear-
ing in mind that most users are reluctant to adopt
to new interfaces, this is an encouraging statement
in favor of this approach.

Table 1 shows the questions pertinent only to
Cha-Cha and the number of responses. For these
questions, respondents could mark Yes, No, or mark
neither choice (NA). Over half the respondents find
the outline view helpful and claim to be able to find
information using it that they can’t otherwise find.8

8The last question seems to be worded in a confusing
manner, because in many cases respondents who were pos-
itive about other aspects of Cha-Cha responded No to this
question.



If only those respondents who expressed an opinion
are taken into account, then about two thirds find
the outline view helpful (56/87 = .64).

Anecdotally, users that tell us they like Cha-Cha
tell us it is often useful for especially hard-to-find
information. In these circumstances they often end
up looking at the hyperlink one or two levels above
a hit and explore the web site in that general area.

We think there are three main reasons between
the discrepancies in the preference results we see
between the follow-up user study and the survey.
First, the local/global improvements to the path
generation discussed in Section 3.2 were made af-
ter the user study but prior to the survey. We
think these changes improve the meaningfulness of
the hierarchies in many cases. Second, we suspect
that users grow to prefer the outline view as they
become more familiar with the system. The bene-
fits of a new interface cannot always be assimilated
immediately, and may be especially difficult to ap-
preciate in a timed test like that of our follow-up
study. Survey users used the interface to achieve
their own ends at their own pace. Third, some users
may prefer Cha-Cha over the commercial search en-
gine because Cha-Cha’s list view is richer than that
of the commercial search engine, and because the
commercial engine displays advertisements.

5 CONCLUSIONS AND
FUTURE WORK

We have described the motivation, architecture, al-
gorithms, and user assessment results for a search
engine interface that organizes search results over
large intranets into coherent structures.

We are encouraged by the user study results,
the initial survey results, and informal reactions by
users of the system. We argue that if we are pro-
viding an interface that is preferred by a substantial
subset of the user population, then we are providing
a useful service. During the course of the pilot study
and the fuller study, we have learned about improve-
ments participants would like to see in the system
design that might make the outline view substan-
tially more effective than standard views. In future,
we plan to investigate how to incorporate semantic
information into the interface. We also plan to in-
dex a wide variety of organizations’ intranets.

Acknowledgements We thank Ray Larson for
adding code to Cheshire II to make it suit our needs,
Keith Bostic and Margo Seltzer of SleepyCat Soft-

ware Inc for allowing use of their database software
package, Eric Brewer for arranging access to Ink-
tomi for an earlier version of the system, Kevin
Heard and Bryan Lewis for technical assistance, and
Hal Varian for general support. Additionally, we
thank Sun Microsystems for a generous equipment
donation.

References

[1] M. Agosti, G. Gradenigo, and P.G. Marchetti. A
hypertext environment for interacting with large
textual databases. Information Processing & Man-
agement, 28(3):371–387, 1992.

[2] Ricardo Baeza-Yates and Berthier Ribeiro-Neto.
Modern Information Retrieval. Addison-Wesley
Longman Publishing Company, 1999.

[3] Krishna Bharat, Andrei Broder, Monika Hen-
zinger, Puneet Kumar, and Suresh Venkatasubra-
manian. The connectivity server: fast access to
linkage information on the web. In Proceedings of
the Seventh International World Wide Web Con-
ference (WWW 7), 1998.

[4] Sergey Brin and Lawrence Page. The anatomy of a
large-scale hypertextual web search engine. In Pro-
ceedings of the Seventh International World Wide
Web Conference, 1998.

[5] Junghoo Cho, Hector Garcia-Molina, and Larry
Page. Efficient web crawling through URL order-
ing. In Proceedings of the Seventh International
World Wide Web Conference (WWW 7), 1998.

[6] William S. Cooper, Fredric C. Gey, and Aitoa
Chen. Probabilistic retrieval in the TIPSTER col-
lections: An application of staged logistic regres-
sion. In Donna Harman, editor, Proceedings of the
Second Text Retrieval Conference TREC-2, pages
57–66. National Institute of Standards and Tech-
nology Special Publication 500-215, 1994.

[7] W. Bruce Croft, Robert Cook, and Dean Wilder.
Providing government information on the internet:
Experiences with THOMAS. In Proceedings of Dig-
ital Libraries ’95, pages 19–24, Austin, TX, June
1995.

[8] F. Douglis, A. Feldmann, B. Krishnamurthy, and
J. Mogul. Rate of change and other metrics: a live
study of the world-wide web. In Proceedings of the
1997 Usenix Symposium on Internet Technologies
and Systems (USITS-97), Dec 1997.

[9] Dennis E. Egan, Joel R. Remde, Thomas K. Lan-
dauer, Carol C. Lochbaum, and Louis M. Gomez.
Behavioral evaluation and analysis of a hypertext
browser. In Proceedings of the ACM SIGCHI Con-
ference on Human Factors in Computing Systems,
pages 205–210, May 1989.



[10] H. P. Frei and D. Stieger. The use of semantic
links in hypertext information retrieval. Informa-
tion Processing & Management, 31(1):1–13, 1994.

[11] Marti A. Hearst. The use of categories and clus-
ters in organizing retrieval results. In Tomek Strza-
lkowski, editor, Natural Language Information Re-
trieval, pages 333–374. Kluwer Academic Publish-
ers, 1999.

[12] Marti A. Hearst and Chandu Karadi. Cat-a-cone:
An interactive interface for specifying searches and
viewing retrieval results using a large category hi-
erarchy. In Proceedings of the 20th Annual Interna-
tional ACM/SIGIR Conference, Philadelphia, PA,
1997.

[13] Marti A. Hearst and Jan O. Pedersen. Reexam-
ining the cluster hypothesis: Scatter/gather on re-
trieval results. In Proceedings of the 19th Annual
International ACM/SIGIR Conference, pages 76–
84, Zurich, Switzerland, 1996.

[14] Adrienee J. Kleiboemer, Manette B. Lazear, and
Jan O. Pedersen. Tailoring a retrieval system for
naive users. In Proceedings of the Fifth Annual
Symposium on Document Analysis and Informa-
tion Retrieval (SDAIR), Las Vegas, NV, 1996.

[15] Jon Kleinberg. Authoritative sources in a hy-
perlinked environment. In Proceedings of the 9th
ACM-SIAM Symposium on Discrete Algorithms,
1998.

[16] Eric Lagergren and Paul Over. Comparing inter-
active information retrieval systems across sites:
The trec-6 interactive track matrix experiment.
In Proceedings of the 21st Annual International
ACM/SIGIR Conference, pages 164–172, 1998.

[17] Thomas K. Landauer, Dennis E. Egan, Joel R.
Remde, Michael Lesk, Carol C. Lochbaum, and
Daniel Ketchum. Enhancing the usability of text
through computer delivery and formative evalua-
tion: the superbook project. In C. McKnight,
A. Dillon, and J. Richardson, editors, Hypertext: A
Psychological Perspective, pages 71–136. Ellis Hor-
wood, 1993.

[18] Ray R. Larson, Ralph Moon, Jerome McDonough,
Lucy Kuntz, and Paul O’Leary. Cheshire ii: De-
sign a next-generation online catalog. Journal
of the American Society for Information Science,
47(7):555–567, 1996.

[19] X. Allan Lu and Robert B. Keefer. Query expan-
sion/reduction and its impact on retrieval effective-
ness. In Donna Harman, editor, Proceedings of the
Third Text Retrieval Conference TREC-3, pages
231–239. National Institute of Standards and Tech-
nology Special Publication 500-225, 1995.

[20] Y. S. Maarek, M. Jacovi, M. Shtalhaim, S. Ur,
D. Zernik, and I. Z. Ben Shaul. WebCutter: A sys-
tem for dynamic and tailorable site mapping. In

Proceedings of the Sixth International World Wide
Web Conference, pages 713–722, 1997.

[21] Robert R. Mackie and C. Dennis Wylie. Fac-
tors influencing acceptance of computer-based in-
novations. In Martin Helander, editor, Handbook
of Human-Computer Interaction, pages 1081–1106.
Springer Verlag, 1988.

[22] Udi Manber, Mike Smith, and Burra Gopal. We-
bGlimpse – combining browsing and searching. In
Proceedings of 1997 Usenix Technical Conference,
1997.

[23] Gary Marchionini. Information Seeking in Elec-
tronic Environments. Cambridge University Press,
1995.

[24] Filippo Menczer and Richard K. Belew. Adap-
tive information agents in distributed textual envi-
ronments. In Proceedings of the 2nd International
Conference on Autonomous Agents (AGENTS-98),
pages 157–164, May 1998.

[25] A. Nation. Visualizing websites using a hierarchical
table of contents browser: Webtoc. In Proceedings
of the Third Conference on Human Factors and the
Web, Denver, CO, 1997.

[26] Jakob Nielsen. Designing Excellent Websites: Se-
crets of an Information Architect. New Riders Pub-
lishing, 1999. To appear. See www.useit.com.

[27] Natanya Pitts-Moultis and Cheryl Kirk. XML
Black Book. The Coriolis Group, 1999.

[28] Marc Sebrechts, Joanna Vasilakis, Michael S.
Miller, John V. Cugini, and Sharon J. Laskowski.
Visualization of search results: A comparative
evaluation of text, 2d, and 3d interfaces. In
Marti A. Hearst, Fredric Gey, and Richard Tong,
editors, Proceedings of the 22nd Annual Interna-
tional ACM/SIGIR Conference, pages 3–10, Berke-
ley, CA, 1999.

[29] Loren Terveen and Will Hill. Finding and visual-
izing inter-site clan graphs. In Proceedings of the
ACM SIGCHI Conference on Human Factors in
Computing Systems (CHI ’98), Los Angeles, CA,
April 1998. ACM.

[30] Kent Wittenburg and Eric Sigman. Integration of
browsing, searching, and filtering in an applet for
web information access. In Proceedings of the ACM
SIGCHI Conference on Human Factors in Comput-
ing Systems, Late Breaking Track. ACM, 1997.


