
A Study of the Use
of Current Speech Recognition
in an Information-Intensive Task

Shiry Ginosar
University of California,
Berkeley
Berkeley, CA 94704 USA
shiry@cs.berkeley.edu

Marti Hearst
University of California,
Berkeley
Berkeley, CA 94704 USA
hearst@berkeley.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CHI’14 , April 26–May 1, 2014, Toronto, Canada.
Copyright c© 2014 ACM ISBN/14/04...$15.00.
DOI string from ACM form confirmation

Abstract
Speech input is growing in importance, especially in
mobile applications, but less research has been done on
speech input for information intensive tasks like document
editing and coding. This paper presents results of a study
on the use of a modern publicly available speech
recognition system on document coding. We record the
performance and preferences of 7 expert coders on two
types of documents. Participants voiced concern about
the well-known drawbacks of speech recognition: the
response time was felt to be slower than desired and the
recognition was thought to be not accurate enough.
Other concerns include the need to work with others in
quiet or loud spaces. However, some of the experienced
coders preferred the speech interface because they saw
the advantages of a multimodal design for this task,
commenting on the reduced manual manipulation needed
for typing, and a less repetitive feeling.

Author Keywords
Speech input; multimodal; document coding

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g.,
HCI)]: Miscellaneous.

Introduction
Speech recognition interfaces have seen tremendous
advances in recent years primarily in mobile technologies
to which they are well suited [6]. However, a few previous
studies examined the use of speech interfaces in the
context of information-intensive tasks such as annotating
collaboratively written papers and commenting computer
code [4, 5, 7]. Unfortunately, at the time these studies
were run, speech recognition technology was not yet
advanced enough to enable the researchers to use a
working system. Instead, most studies relied on
simulations. We set out to re-examine user preference and
performance when interacting multi-modally in
information intensive tasks. In contrast to previous
studies, we take advantage of a current state-of-the-art
publicly-available speech recognition system [8].

(a) Edit button

(b) Input window

Figure 1: A coder selects the
desired text (in blue) and clicks
an edit button (a) in order to pop
up the input window (b). Here
she can assign the appropriate
code using typing in one interface
and speech in the other. In this
view two codes were already
applied, one color-coded in purple
and one in pink.

The task we focus on is document coding, a practice used
in various disciplines in order to prepare textual data for
in-depth analysis [3]. This process involves reading text
documents and marking each word, sentence or paragraph
as belonging to a descriptive category, or code, according
to a given schema. The process of coding a document
requires that the annotator perform two simultaneous
(time-sharing) tasks: (1) reading the document and (2)
annotating it according to the given schema, which
requires first selecting text and then annotating it with a
code. We chose this task because we hypothesize that an
interface that allows the coder to use the complementary
modalities of reading (visual) and speaking (audio) would
lead to better performance than an interface that allows
the coder to use only visual modalities like reading
(visual) and typing (visual). Furthermore, because the
text selection component requires manual manipulation,
the audio input should provide manual relief over the need
to type to enter the code.

Interface Designs
We designed and implemented two web-based document
coding interfaces that vary only in the modality used for
assigning a code to a chunk of selected text. In one
interface, the code is input via keyboard entry (typing)
and the other uses audio (speech) input.

Both interfaces are extensions of the Annotator tool, an
open source document annotator [2]. In both interfaces
the coder selects the desired text using a mouse and clicks
an edit button (Figure 1a) to pop up an input window
(Figure 1b). Once a code is assigned, the relevant text is
highlighted with the color associated with the code.
Multiply-coded text is highlighted with a mixture of all
relevant code colors. Both interfaces display all codes,
uniquely color coded, in a column at the right of the
screen so that the coder need not memorize the schema.

In the typing interface the coder types the appropriate
code into the input window and may use an
auto-complete functionality by hitting either the Tab or
the Enter key. A second press on Enter or a click on the
Save button records the code and closes the entry box.

In the speech interface the coder speaks the appropriate
code and its transcription is automatically entered into
the input window. Speech recognition is performed in
real-time using Google’s implementation of the HTML5
Web Speech API [8]. However, a keyboard is not
necessary for using this interface as the text can be
selected and buttons clicked using only the mouse.

Experiment
We designed an experiment to test two hypotheses for the
document coding task: that participants would code more
efficiently using the speech interface and that they would
prefer it over typing. These hypotheses were only partially

supported by the results of the study.

Participants
Participants in the study were 7 researchers (2 male), who
have been coding documents about the Occupy
Movement for between 3 and 8 months as part of the
DOSSIER project [1]. Each participant coded 851
documents on average before the start of this study (min
10, max 1626). All were students in the sociology
department, 6 undergraduate and one graduate (ave age
22.1) and all were native English speakers.

Tasks
Two document sets were used: excerpts of news articles
about the Occupy Movement (avg 14.5 sentences per
document, 10 codes in the schema), and excerpts of
pages from Wikivoyage, a free collaborative travel
guide [9] (avg 24.25 sentences per document, 15 codes in
the schema). Occupy documents were taken from the
DOSSIER project articles. Although these were shorter in
length, they often required elaborate double and triple
coding of sentences according to the DOSSIER schema.
Travel guide documents were chosen as their structure
and content is readily familiar to most educated people.
The schema we used for this task consisted of 15 top-level
section headers from the Wikivoyage documents such as
”see”, ”eat” and ”get around”.

Procedure
Each session lasted 1 hour and was conducted in a lab
setting. Coding was done on a 15” MacBook pro.
Participants’ speech was captured using a Logitech
headset with an attached microphone.

The order of display of documents was fixed, but order of
presentation of interface modality was chosen at random.
Participants did all coding in one modality first, then filled

out an interface-specific questionnaire, then coded the
remaining documents using the other modality, filled out a
second questionnaire, and then completed a final
post-study questionnaire that compared the two
interfaces. (Participants coded 2 Occupy, 2 Travel in one
modality and then, 2 Occupy, 2 Travel in the other). We
captured coding action time: from when the user clicked
on the edit button to when the assigned code was saved.

Results
Qualitative
While the Likert scale post-interface questions produced
inconclusive results, a post-study direct comparison
questionnaire revealed that participants prefer the speech
to the typing interface (4 participants out of 7) and view
it as more efficient (4 out of 7) and easier to use (5 out of
7). Still, they find the typing interface more suitable for
coding documents due to the slow response times and low
accuracy of using current speech recognition technology.

Participants listed as disadvantages of the speech interface
the variable accuracy of speech recognition, the difficulty
of working in a shared environment and the difficulty of
correcting recognition mistakes. Interestingly, participants
recognized that speech input has the potential to be more
physically efficient than switching between a pointing
device and a keyboard and allows for better time-sharing
with a visual task. In essence, they brought up all the
major theoretical points that support multimodal speech
interfaces in the literature [6]. The willingness of expert
users to pay the price of reduced accuracy may be because
of their need to alleviate some of the repetitiveness of
long-term manual annotation work.

Quantitative
Applying a code via speech was slower than typing for
both types of documents (Figure 2). For occupy
documents, participants took 3.15 seconds on average to
apply a code using speech (standard deviation 0.71
seconds) and 2.65 seconds by typing (standard deviation
1.15 seconds). The difference is statistically significant
with p <0.05 (Student T-Test, t=5.123541, p <0.00001).
For travel documents, participants took 3.14 seconds on
average to apply a code using speech (standard deviation
0.66 seconds) and 2.16 seconds by typing (standard
deviation 1.17 seconds). The difference is again
statistically significant (t=11.049841, p <0.00001). The
larger variance in the typing condition may be due to
differences in participants’ typing speeds.

Figure 2: Participants took less
time to type a code than to
speak it. Graph shows action
times, measured from edit button
click to recognition, by task
(occupy vs. travel) and condition
(speech vs. typing). Outliers
longer than 6s were removed
from graph. Median, 2nd and 3rd
quartiles highlighted.

The difference in the time it takes to apply a single code is
partly due to performing speech recognition in real-time,
especially using the Web Speech API as voice input needs
to travel to a remote server and back in addition to the
time spent in recognition itself [8]. However, when
applying multiple codes in sequence the speech interface
can allow for some parallelism as the next code can be
applied while the last one is being recognized.

Conclusion
In this paper we revisited the inclusion of speech input in
interfaces for information-intensive tasks. Specifically, we
focused on document coding, a common data preparation
task in the humanities and social sciences. In a small-scale
study, we asked experienced coders to annotate two types
of documents. We measured their performance and
collected their preferences using two variations of input to
a coding interface: speech and typing. Using speech was
slower across the board due to time spent on recognition
and a round trip to the speech recognition application’s

servers. However, we learned from the qualitative data
that while the participants are aware of the limitations of
currently available speech recognition systems, most of
them see the benefits of using speech input for coding
documents. Participants preferred the speech interface
and welcomed an alternative input method.

Acknowledgements
This work is supported by the National Science
Foundation Graduate Research Fellowship under Grant
No. DGE 1106400 and by grant HK-50011 from the
National Endowment for the Humanities.

References
[1] Adams, N., et al. Dossier: Detailed observations of

sequential strategies, interactions, events, and repertoires.
Tech. Rep. NSF Grant SES-1303662, UC Berkeley, 2013.

[2] Annotator. http://okfnlabs.org/annotator/.
[3] Auerbach, C. F., and Silverstein, L. B. Qualitative data:

An introduction to coding and analysis. NYU press, 2003.
[4] Kraut, R., Galegher, J., Fish, R., and Chalfonte, B. Task

requirements and media choice in collaborative writing.
Hum.-Comput. Interact. 7, 4 (Dec. 1992), 375–407.

[5] Neuwirth, C. M., Chandhok, R., Charney, D., Wojahn, P.,
and Kim, L. Distributed collaborative writing: a
comparison of spoken and written modalities for reviewing
and revising documents. In Proc. CHI, ACM (1994),
51–57.

[6] Oviatt, S. Multimodal interfaces. In The Human-Computer
Interaction Handbook: Fundamentals, Evolving
Technologies and Emerging Applications, Third Edition,
A. Sears and J. Jacko, Eds. Taylor & Francis, 2002.

[7] Soudian, S., and Fels, D. I. Verbal source code descriptor.
In Proc. IEEE Workshop on Empirical Studies of Software
Maintenance (2002).

[8] Web Speech API. https://dvcs.w3.org/hg/speech-api/raw-
file/tip/speechapi.html.

[9] Wikivoyage. http://en.wikivoyage.org/.

	Introduction
	Interface Designs
	Experiment
	Participants
	Tasks
	Procedure

	Results
	Qualitative
	Quantitative

	Conclusion
	Acknowledgements
	References

