
Aligning Development Tools with the Way Programmers
Think About Code Changes

Marat Boshernitsan∗

Agitar Software, Inc.
450 National Ave, Suite A
Mountain View, CA 94043

marat@agitar.com

Susan L. Graham
Computer Science

University of California
Berkeley, CA 94720-1776
graham@cs.berkeley.edu

Marti A. Hearst
School of Information

University of California
Berkeley, CA 94720-4600

hearst@ischool.berkeley.edu

ABSTRACT
Software developers must modify their programs to keep
up with changing requirements and designs. Often, a
conceptually simple change can require numerous edits
that are similar but not identical, leading to errors and
omissions. Researchers have designed programming en-
vironments to address this problem, but most of these
systems are counter-intuitive and difficult to use.

By applying a task-centered design process, we devel-
oped a visual tool that allows programmers to make
complex code transformations in an intuitive manner.
This approach uses a representation that aligns well
with programmers’ mental models of programming struc-
tures. The visual language combines textual and graphi-
cal elements and is expressive enough to support a broad
range of code-changing tasks. To simplify learning the
system, its user interface scaffolds construction and exe-
cution of transformations. An evaluation with Java pro-
grammers suggests that the interface is intuitive, easy
to learn, and effective on a representative editing task.

Author Keywords
Transformations, visual languages, cognitive dimensions.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User In-
terfaces - interaction styles, user-centered design

INTRODUCTION
Software developers often need to make numerous sys-
tematic changes throughout the source code. These
changes can be motivated by design refinements, bug
fixes, and maintenance updates, such as converting li-
brary calls using an old API to a new one. Many con-
ceptually simple changes can have far-reaching effects,
requiring numerous similar but not identical edits that
make the modification process tedious and error-prone.
Not surprisingly, there is considerable interest in creat-
ing tools to help automate this transformation process.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2007, April 28-May 3, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-593-9/07/0004...$5.00.

Figure 1. A new tool enables software developers to spec-
ify and execute code-editing transformations.

Automated refactoring tools in modern interactive de-
velopment environments (IDEs) support certain often-
used transformations. These tools are lightweight and
easy to use, but they offer a limited range of transfor-
mations and do not allow programmers to create their
own. Powerful and flexible tools that support formally-
specified program transformations exist, but are rarely
adopted. Using these tools is challenging for the average
programmer because they require manipulation of com-
plex representations—such as abstract syntax trees—
which bear little resemblance to the programmer’s intu-
itive understanding of programs. Research in the psy-
chology of programming has repeatedly confirmed this
observation (see Detienne [12] for a summary).

The key contribution of our work is a novel program
manipulation paradigm that enables programmers to
change source code with interactively-constructed vi-
sual program transformations. Our approach bridges
the gap between formal manipulation of source code
structure and lightweight refactoring, making transfor-
mations accessible to programmers and helping reduce
the effort expended on mundane code-editing tasks.

Figure 1 shows a visual program transformation that
changes a conditional assignment in a Java program

∗The work presented in this paper was done while the first
author was at the University of California, Berkeley.

(the pattern at the top of the figure) to an if-statement
(shown in the shaded part) to improve readability. By
employing user-centered design techniques, we have de-
veloped a visual language for representing structural
transformation patterns. This design, motivated by the
Cognitive Dimensions of Notations framework [16], al-
lows programmers to perform direct-manipulation of a
representation that aligns well with their mental model
of source code. To help programmers learn how to ap-
ply the visual transformations, we have created a user-
interface that scaffolds construction and execution of
transformations. The design of the visual transforma-
tion language and of the accompanying user-interaction
model represents the second contribution of this research.
Extending the traditional evaluative use of the Cogni-
tive Dimensions framework to earlier design phases is
our third contribution.

Our fourth contribution is the integration of a proto-
type visual transformation tool into a professional IDE.
Tight integration with a traditional development envi-
ronment allows the use of transformations in-line with
other coding activities. Experience suggests that many
programmers are hesitant to use tools that require them
to “step outside” their usual programming environment.

We evaluated our system through a formal usability
study with five proficient Java programmers, finding
they were able to learn the language quickly and use
the environment effectively to complete a representa-
tive code editing task. On average, they responded pos-
itively to subjective questions about the intuitiveness,
expressiveness, ease of use, and ease of understanding of
the system. The participants indicated that while some-
times they made small errors that were frustrating, the
system made it easy to stop in the middle of a trans-
formation, check their work so far, and to explore vari-
ous options before making changes. The results of our
study support our hypothesis that an intuitive program
transformation tool can reduce the effort expended on
making certain types of changes to source code.

In the remainder of this paper, we describe related work,
the theoretical framework, and our design process. Then
we describe the current design in depth, describe the us-
ability study, and present conclusions.

RELATED WORK

Source Code Transformation Tools
The most ubiquitous and the least sophisticated ap-
proach to program transformation is text substitution.
Most modern program editors offer this facility, as do
several command-line tools, such as sed and awk [14].
The major weakness of the text-substitution approach
is its treatment of source code as flat, structureless text.
For example, a structure-based transformation, such as
the one shown in Figure 1, cannot be expressed with
text-substitution tools. Regular-expression patterns can
be difficult to read (see Figure 2a for a sed example) and
can cause difficulties for the users once their complexity
extends beyond the trivial [4].

s/(int)([_a-zA-Z][_a-zA-Z0-9]+).nval/1.nextInt()/g

(a)

rule transformNextInt
replace [expression]

(int) E [id] C [repeat component]
by E C [transformNextIntInComponent]

end rule

rule transformNextIntInComponent ...

(b)

Figure 2. Two examples of describing source code trans-
formations using (a) Unix’s sed utility and (b) TXL.

Several systems provide structure-based source code ma-
nipulation primitives. Early tools, such as A* [20] and
TAWK [17] expose syntax trees as primitive data struc-
tures. Other tools use more abstract representations
based on the algebraic data types and term pattern
matching. (Stratego/XT [29] is a relatively recent repre-
sentative example.) While tree-based tools can be pow-
erful, working with them requires understanding low-
level program representations. Most ordinary program-
mers lack the skill needed to use these tools.

Some transformation tools attempt to hide these low-
level details by using an extended syntax of the under-
lying programming language, improving readability and
maintainability of transformations. Representative ex-
amples in this category include REFINE [8], DMS [3],
and TXL [11]. Still, these tools are difficult to use (see
Figure 2b for a TXL example) and are utilized only for
highly specialized tasks such as fixing the Y2K bug [10]
or porting software [30].

By contrast, automated refactoring tools, popularized
by the Refactoring Browser [27], offer high-level pro-
gram manipulation primitives without exposing any pro-
gram structure. Programmers find refactoring tools in-
dispensable for broadly applicable transformations, such
as “rename variable” or “extract method.” However,
these tools are limited in the types of transformations
they support because not all refactoring transformations
can be automated and because not all useful transfor-
mations constitute behavior-preserving refactoring [26].

Transformations in Structured Documents
Several researchers suggest treating programs as struc-
tured text documents by translating them into the XML
format [2, 9]. This allows to perform code-changing
transformations with an XML transformation tool such
as XSLT [1] or XDuce [18]. Unfortunately, these tools
again require familiarity with a complex transformation
language and with the underlying program’s representa-
tional structure. Encoding type and scope information
in XML can be difficult [7] and can complicate trans-
formation patterns.

Tools such as VXT [25] and Xing [15] offer visual envi-
ronments for transformation of XML documents based
on a treemap representation. However, since these tools

were never intended for programs, their pattern repre-
sentation is geared toward data sets that impose no spa-
tial structure.

Editing By Example
Programming by demonstration (PBD) is an old and
recurring theme in HCI research. Over the years, re-
searchers have developed several PBD tools for automat-
ing text editing tasks. These tools, known as edit-by-
example systems, offer a solution for repetitive editing.

All edit-by-example systems infer abstract editing ac-
tions from a few concrete examples and apply these ac-
tions throughout the text. Some systems construct an
abstract editing model by mapping “before” and “af-
ter” blocks of text (EBE [24]) or by inferring text editing
operations such as insertions and deletions (TELS [31]).
Other systems infer the structure of the text from multi-
ple text regions (LAPIS [23], Visual AWK [21]), permit-
ting subsequent modifications to be made on the com-
mon parts across multiple similar regions of text.

Most edit-by-example systems are not aware of the ex-
plicit document structure, making them unsuitable for
most non-trivial source code transformations. Although
some of this structure can be inferred given sufficiently
many examples, the need for the programmer to lo-
cate these examples obviates much of the appeal of au-
tomated editing. LAPIS includes a pattern language
that makes the search easier, but having to specify pat-
terns manually still lessens the simplicity of the edit-
by-example approach. Moreover, LAPIS’s simultaneous
editing interface is not sufficiently flexible for complex
restructuring common in program source code.

THEORETICAL FRAMEWORK
Our design process was motivated by Green’s frame-
work of Cognitive Dimensions of Notations (CDs) [16].
The CDs framework offers techniques for interface eval-
uation and provides guidance on how the design can be
improved. The framework includes fourteen usability
dimensions, such as visibility, consistency, and error-
proneness. The dimensions are not independent; for
instance, an improvement to the consistency of an in-
terface can lead to an increase in error-proneness. To-
gether, the dimensions determine a cognitive profile of
a system. This profile does not measure the quality
of the system; different activities and different systems
need different profiles.

Designers usually apply the CDs framework as part of
a later-stage usability evaluation using the CDs ques-
tionnaire [5]. In our work, we also use it for needs as-
sessment, evaluation of early design mockups, and as
part of the final usability evaluation. From our needs
assessment (described below), we identified the follow-
ing cognitive dimensions as essential for the design of
an intuitive transformation tool:

• High visibility. The interaction with the tool must
be visually rich. It should be possible to examine both
the pattern and the transformation through a visual
representation understandable by the programmer.

• Moderate diffuseness. The notation for specifying
transformations should not be overly terse so as to
make it opaque to programmers new to the tool. At
the same time, it should not be overly verbose, re-
quiring long descriptions for simple transformations.

• Low error-proneness. The programmer should be
prevented from making errors whenever possible; how-
ever, error prevention must never happen at the cost
of usability. If the programmer happens to introduce
an error, it should be easy to detect and fix.

• Closeness of mapping. It should be reasonably
easy for the programmer to map a structural trans-
formation to his conceptual understanding of the pro-
gram structure.

• Progressive evaluation. The programmer should
be able to check the results of a transformation-in-
progress by examining its effect on the entire body of
source code before “committing” the transformation.

• No premature commitment. It should be possible
to manipulate patterns and transformations in any
order. Any transformation must be easily reversible
after it is applied.

DESIGN PROCESS

Task and User Analysis
We conducted two informal studies as the initial step
of our task-centered design process. First, we analyzed
programmer-provided verbal descriptions of their own
changes in several software systems. We studied the
development log for TEX [19] (a popular typesetting
package), the change log for XEmacs1 (a text editor
for programmers), and a pair-programming transcript
recorded by Martin and Koss [22]. Second, we con-
ducted an experiment to help reveal how programmers
describe small transformation steps to one another. In
that experiment the participants were shown “before”
and “after” snapshots of source code and were asked to
write down a description of each change. We were par-
ticularly interested in how programmers reference code
fragments, how they describe the output, and what pro-
gramming style they use.

Our analysis and observations led to four early design
decisions. First, we decided to use high-level program-
ming concepts, such as variables, methods, and loops, as
the building blocks of our transformation language, be-
cause the programmers talked about these concepts in
their change descriptions. Second, we noticed that the
programmers used patterns to describe classes of similar
changes, for example “change BI_* macros to BYTE_*.”
This suggested that a rule-based transformation lan-
guage, consisting of “patterns” and “actions” would fit
naturally into the programmers’ thinking about system-
atic changes. Third, when faced with a transformation
that incorporates scoping information, the programmers
treated it implicitly. For example, the intent of “rename
‘x’ to ‘y’,” usually is to rename only those instances of
1http://www.xemacs.org

Selected Packages

example

Selected Types

Example2

Selected Members

removeListener(Listener)

package example;
class Example2 {
…
void removeListener(Lsnr x){
r.removeElement(x);

}
}

select from package example
class Example2
statement r.removeElement(x)

do

with r.remove(r.indexOf(x))

+ and + or

replace

+ do

package example;
class Example2 {

…
void removeListener(Lsnr x){
r.remove(r.indexOf(x));

}
}

Accept

Packages, types, and members affected by transformation

Before and after preview of the transformation

Transformation pattern

Transformation action

Figure 3. First mockup of the transformation editor.
The transformation shown here rewrites calls to the
removeElement() method in java.util.Vector as a combi-
nation of calls to remove() and indexOf().

‘x’ that are in the same scope. It should be possible to
express this intent in the language that describes trans-
formations. Fourth, we observed that the terminology
used by programmers was specific to their programming
language. As our goal was to develop a transformation
tool for Java programmers, our design is tightly coupled
with Java. We expect that our approach can be applied
to other programming languages.

Early Designs
We created four mockups of the transformation tool
prior to finalizing the design and building the first pro-
totype. The first design attempt was inspired by SQL,
a database query language. We borrowed the notion of
a “selection,” described by a select-statement that se-
lects statements for transformation. Classes, packages,
and methods are selected using name-based patterns.
Statements and expressions are selected using code pat-
terns. An editing action describes how to transform
code fragments that the patterns match. In this design,
programmers start by selecting a single code fragment
that they want to change. The transformation editor
provides assistance by creating an identity transforma-
tion that changes nothing. The programmers use that
transformation as a starting point for making it more
general. The transformation editor assists with this
process by offering context sensitive help and showing
the effects of the transformation after each modification
step. See Figure 3 for one of the screens in this mockup.

We evaluated this first mockup with a group of re-
searchers. They applauded the from-example interac-
tion model, but disliked the design of the transforma-
tion language. We then evaluated the transformation
description language using the Cognitive Dimensions
framework. First, we observed that the transformation
language exhibits high diffuseness. It takes too much
code to describe a simple transformation. Second, the
notation introduces hidden dependencies—the name of
a pattern variable defined in the pattern must corre-

rotidE noitamrofsnarT

* tcejorp tceles
 * egakcap

 * ssalc
)renetsiL(renetsiLevomer dohtem

 {
 ...

)x(tnemelEevomer.r
 ...

 }

dohteM :tnatsissA noitamrofsnarT
(emaN * ,gnirts yna = ?)retcarahc yna =

renetsiLevomer

setubirttA
erongi erongi erongi
cilbup ecnatsni lanif
etavirp tcartsba lanif-non

detcetorp
egakcap

(epyt nruteR * ,gnirts yna = ?)retcarahc yna =

diov

(stnemugrA * ,gnirts yna = ?)retcarahc yna =

 epyT tnemugrA emaN tnemugrA
renetsiL x ddA

evomeR

(snoitpecxE * ,gnirts yna = ?)retcarahc yna =

 epyT noitpecxE
ddA

evomeR

(a) Pattern specification in an SQL-like notation. This
example includes a mockup of a context-sensitive inter-
face that assists the user with transformation patterns.

package edu.[[*cs]].berkeley.example;

class [<Name>] {
void removeListener(Listenter x) {

[<Statement>*]
[<Expression>:Vector].removeElement([<Args>]);
[<Statement>*]

}
}

(b) Pattern specification based on the Java syntax. Text
patterns are enclosed between double square brackets ([[
and]]); structural patterns are bracketed by [< and >].
Patterns with * indicate repetition.

Figure 4. Two early examples of the pattern language
design. These patterns match calls to the removeElement()
method for the transformation described in Figure 3

spond to its use in the action. This increases the vis-
cosity of the description: a change to a name in the
pattern must be propagated to all places in the action
where that name is used. Third, the description lan-
guage is error prone—it is possible to introduce errors
by mistyping a pattern or an action. Fourth, closeness
of mapping at the level of package, class, and method
patterns is not very good because the structure of the
select-statement does not follow the structure of dec-
larations in Java programs.

In the second iteration we attempted to resolve the
problems with the first design by implementing a user-
interaction model that provides better scaffolding for
building transformation patterns (see Figure 4a). We
introduced the notion of a context-sensitive transfor-
mation assistant that appears as a separate pane to the
right of the free-form text editor. The assistant lists the
actions that can be performed in the context of the cur-
sor’s location in the editor. The transformation editor
maintains the consistency between the transformation
description and the selected options in the assistant;
changes to one update the other.

This design received mixed feedback. The audience
liked the transformation assistant and appreciated how
it helps the programmer learn the transformation lan-

(a)

(b)

Figure 5. Two transformations that rewrite calls to the
removeElement() method in java.util.Vector as a combi-
nation of method calls to remove() and indexOf().

guage. But the patterns were still too difficult to un-
derstand. It was not clear how the programmers would
know the sequence of the steps necessary create a gen-
eralized pattern that matches all code fragments they
want to change.

As a result of the second evaluation, we abandoned the
SQL-inspired format in favor of a language that resem-
bles Java source code. We augmented Java syntax with
syntactic escapes to the pattern language for describing
wildcards, pattern variables, and matching conditions.
Figure 4b shows an example of this design.

After writing down several transformations in this lan-
guage, it became clear that representing structural pat-
terns in a text-based form is awkward. The transfor-
mation patterns became difficult to read, defeating the
reason for basing the pattern language on the Java syn-
tax. We solved this problem by moving to a hybrid vi-
sual transformation language that combines textual and
graphical elements. This language became the founda-
tion of the current design, which we call iXj.2

CURRENT DESIGN

Visual Language for Program Transformations
Figure 5a shows a simple pattern that matches calls
to the removeElement() method in java.util.Vec-
tor. This method takes an “element to remove” as an
argument; our transformation will replace calls to this
method with calls to the remove() method whose ar-
gument is the index of an element to remove. (This
is the same transformation as in Figure 3.) A pat-
tern in iXj is represented as a code fragment surrounded
with a labeled graphical box identifying that fragment’s
programming language structure. The boxes are spa-
tially arranged in such a way that the pattern appears
as a Java code fragment surrounded with rectangles
that demarcate structural entities. In addition to spe-
cific code fragments, patterns can contain wildcards (see
Figure 5b). Wildcards are denoted by a wildcard box
containing the * symbol. Each wildcard box is anno-
tated with the type of the structural element that it
can match (here, “expression”). Optionally, a wildcard
box can include additional matching constraints. For
2iXj – Interactive TRANSformations for Java

example, the first wildcard in Figure 5b matches those
expressions whose type is a subtype of java.util.Vec-
tor. Figure 1 shows another example of a pattern that
matches all assignments with a conditional expression
(?:) as its right-hand-side.

Any pattern element can be associated with a trans-
forming action, which is displayed in a shaded input
field at the bottom of the pattern box. In contrast to
the mostly structure-based patterns, an action speci-
fies the replacement text, including, if needed, refer-
ences to fragments of the matched pattern. For ex-
ample, the action in Figure 5a simply rewrites calls to
r.removeElement(x) with r.remove(indexOf(x)). A
more complicated action in Figure 5b substitutes the in-
stance object in the method call (obj) and the argu-
ments to the removeElement() method ($args$) by re-
ferring to the labels of the corresponding pattern boxes.
The transformation in Figure 1 replaces a conditional
assignment with an equivalent if-statement.

User Interface for Program Transformations
Figure 6 shows a screenshot of the iXj prototype im-
plemented inside Eclipse, a popular professional IDE.3
Programmers interact with the iXj transformation tool
through a view below the standard Eclipse editor (see
Figure 6b). The visual transformation editor (6b-center)
represents the main part of the transformation tool; two
other panes, the transformation assistant and the list of
“pending” transformations, are described subsequently.

Creating a graphical representation for a transforma-
tion from scratch can be challenging even in an inter-
active environment. Our user-interaction model scaf-
folds this process through from-example construction
and iterative refinement. From-example construction
enables programmers to start with a simple transforma-
tion that applies to just one location in the source code
and to generalize that transformation to apply to other
similar code fragments. The immediate feedback pro-
vided in the user interface guides iterative refinement:
at any point in the transformation construction process
the programmer knows what source code is affected and
how it will be modified (see Figure 6a).

To illustrate the process of building a transformation,
we will use a simple transformation that applies de Mor-
gan’s law to a bitwise-and operation. For example,
x = a & b is replaced with x = ~(~a | ~b).

The programmer initiates the transformation by select-
ing a sample code fragment to change. The selection is
unconstrained; however, the transformation editor acti-
vates only when the programmer selects a structurally
complete code fragment, such as an expression. When
this happens, the system automatically generates an ini-
tial pattern from the code selection (see Figure 7a).

The initial pattern matches the exact code fragment
that the programmer selected and all the other code
fragments that are textually similar. Nested-patterns

3http://www.eclipse.org/

Overview

Standard Eclipse views provide pattern matching and transformation feedback

Package explorer shows checkmarks
on files and packages with matches

Source code editor highlights matches
and previews transformation results

Overview indicators mark matches
that are not visible on the screen

New integrated transformation tool puts interactive transformations at programmers’ fingertips

Context-sensitive transformation assistant
lists actions for the selected element

Transformation editor displays
transformation pattern and action

List of pending transformations groups
related edits before they are applied

a

b

Figure 6. Interactive transformation tool as a fully-integrated extension for Eclipse IDE. The transformation in this
figure replaces calls to a deprecated Java library method called show() with an equivalent method called setVisible().

are not shown initially to reduce visual clutter. The pro-
grammer can manipulate the transformations directly
by invoking controls that modify pattern structure.

The controls that appear in the top of each pattern box
permit expansion and collapse of the pattern structure
(see Figure 7b), conversion of a pattern element to (and
from) a wildcard (7c), and addition (and removal) of
a transforming action (7d). Any operation can be re-
versed by re-activating a control. To reduce visual clut-
ter, the controls appear on the screen only when the
programmer passes a mouse pointer over the box.

The transformation editor permits free-form text edit-
ing of the transforming action and textual parts of the
transformation pattern—the programmer can edit the
action simply by clicking on its text (see Figure 7e).

In addition to the transformation editor, Figure 6b shows
two other elements of the iXj user interface: the trans-
formation assistant (6b-left) and the list of pending trans-
formations (6b-right). When the programmer selects
a pattern element (by clicking), the context-sensitive
transformation assistant describes that element and lists
various actions, including those not available through
direct manipulation. The list of pending transforma-
tions helps to avoid intermediate inconsistent states of
the source code by grouping related transformations to-
gether prior to application. The effects of pending trans-
formations can be previewed, but they are not applied
until the programmer decides to do so. Often, when
working on a related transformation, the programmer
realizes that one of the pending transformations is in-
complete and continues to modify that transformation
until it behaves as expected.

Design and Implementation Influences
The design of iXj incorporates several influences from
existing systems. The transformation language includes
elements from other pattern languages, such as the *
symbol for a wildcard, because these elements are likely
to be familiar to users. Our interface design embod-
ies some of the same principles as the edit-by-example
systems: iterative refinement and immediate feedback
guide the user in creating the transformation pattern.

iXj’s graphical notation was inspired in part by diSessa’s
Boxer [13], a Logo-like visual programming language
and a computational environment. Boxer’s computa-
tional element is a box that comprises a visual presen-
tation and computational semantics. Unlike Boxer, iXj
descriptions do not represent computations; they merely
reflect static structure of Java programs. In departure
from Boxer’s free-form spatial metaphor, the transfor-
mation language enforces strict layout rules on the posi-
tion of pattern boxes on the screen. This is necessary to
align pattern boxes so that the pattern looks like source
code. And while iXj’s transforming actions are simi-
lar to Boxer’s computation semantics of boxes, Boxer is
a complete visual programming language, whereas iXj
only allows simple rewrites of source code.

The availability of a free and open development plat-
form, such as Eclipse, was instrumental to this research.
Several elements of the Eclipse user interface influenced
the implementation of the iXj interaction model. For
example, the checkmarks on matching files and pack-
ages (see Figure 6a-left) and the overview indicators
(6a-right) are both features of the Eclipse workbench.
Eclipse also provided a familiar development environ-
ment for the participants in our evaluation.

⇒

(a) iXj generates the initial pattern from selection.

⇒

(b) “Triangle” control expands the pattern structure.

⇒

(c) “To-*” converts pattern elements to wildcards.

⇒

(d) “Running-man” creates the initial do-nothing action.

⇒

(e) Users edit the action as a text-input field.

Figure 7. Key elements in the iXj’s interaction model.

EVALUATION
In order to assess the visual transformation language
and the from-example interaction model, we conducted
an evaluation of the Eclipse-based transformation envi-
ronment through a usability study with five Java pro-
grammers. We trained the participants to understand,
construct, and evaluate transformations. The partici-
pants completed a short code editing task and filled out
an evaluation questionnaire.

Experimental Setup
Each evaluation session consisted of four major compo-
nents: (1) a 20-minute pre-study interview to assess the
participants’ familiarity with major concepts in source
code maintenance, (2) a 20-minute training session in
which the participants learned the transformation lan-
guage and the user-interaction model of the transforma-

tion environment, (3) a 30-minute block of time allotted
for the participants to complete a code-editing task, and
(4) a 20-minute post-study interview, ending with the
participants completing a questionnaire. The entire ses-
sion was recorded for later analysis.

Participants
The participants in our study were proficient Java pro-
grammers with various levels of Eclipse experience. Our
main selection criterion was Java proficiency—we specif-
ically wanted to avoid novices who may not have enough
experience with code maintenance tasks. Three partici-
pants were professional Java programmers employed in
the software industry. Two were students (one gradu-
ate and one undergraduate) in the Computer Science
Department at the University of California, Berkeley.
Four participants were male and one was a female.

All participants considered themselves expert Java pro-
grammers, with an average of eight years of Java ex-
perience. Two participants were self-reported Eclipse
novices having little familiarity with its automated refac-
toring facilities. Three participants use Eclipse for their
day-to-day Java programming.

The pre-study interview was aimed at establishing com-
mon terminology and understanding of source code main-
tenance. We defined maintenance as any programming
activity that does not involve adding new code to a soft-
ware system (authoring). We distinguished three forms
of maintenance: adaptive (adding new features), correc-
tive (fixing defects), and perfective (anticipating future
changes). These definitions coincide with those estab-
lished in software engineering literature [28].

During the pre-study interview all participants reported
regularly performing adaptive and perfective source code
maintenance activities. Three participants estimated
that they spend 20% of their coding time on source code
maintenance, two participants reported that fraction
to approach 40%-50%, and one participant estimated
that 80% of her time is spent performing some form of
maintenance of existing code. All participants reported
using some tools to assist them with these tasks. Of
these tools, the Java compiler was considered the most
ubiquitous for its ability to locate places in source code
that are semantically or syntactically inconsistent after
a change. The participants indicated that they often
structure their maintenance activities to intentionally
cause compilation errors by starting with the most dis-
ruptive change. This practice enables them to use the
resulting compiler error messages as a “to-do” list. (One
participant referred to this as a “chasing the errors” ap-
proach.) Three of the participants reported routinely
using refactoring tools in Eclipse to assist them with
code maintenance tasks. Only one of the participants
was comfortable using command-line tools (such as the
sed and awk utilities), although all participants were
aware of these tools.

We trained participants via a detailed walkthrough of
several transformation examples using the prototype.

Transformation Task
We asked participants to perform a code maintenance
task on a console-based implementation of the Mine-
Sweeper game. The existing implementation of Mine-
Sweeper relied on the java.io.StreamTokenizer class
to process console input. We asked the participants
to convert the uses of StreamTokenizer to the uses of
java.util.Scanner.

Because we did not expect the participants to be fa-
miliar with the StreamTokenizer and Scanner APIs,
we gave them a listing of both APIs and an example of
transforming the uses of one API into another. We told
participants that they should not interpret the transfor-
mations in the example literally and that transforma-
tions in the MineSweeper source code will have slightly
different shapes than those appearing in the example.

Metrics
During evaluation we measured time to completion for
each transformation. We also recorded total time to
completion of the entire task, but we did not find that
metric useful—two participants decided to perform sev-
eral transformations that were not on the list, because
“they seemed appropriate.”

Following completion of the sample task, the partici-
pants were asked to evaluate the transformation tool
by completing a twelve-item questionnaire consisting of
both qualitative and quantitative questions. During our
analysis of the results we were trying to determine (1)
the understandability of the transformation language
vocabulary, (2) the intuitiveness of the pattern struc-
ture, and (3) the ease of developing transformations.
We were also interested in classifying the most common
mistakes that the participants made while attempting
to complete the code editing task.

The questionnaire was constructed using the Cognitive
Dimensions framework and was adapted from Black-
well and Green’s questionnaire optimized for users [5].
We augmented the traditional qualitative CDs question-
naire with a seven-point semantic differential scale. Be-
cause we also applied the CDs framework in the early
stages of our design, the CDs questionnaire provided
feedback on our design targets, as well as the overall
usability picture.

Hypothesis
Our hypothesis was that the participants would find the
transformation tool intuitive and easy to use. We ex-
pected them to perform well on the sample transfor-
mation task and to become reasonably proficient with
the tool. After a brief exposure to the transformation
tool the participants should understand how to build a
pattern, how to create an action, and how to evaluate
correctness and completeness of a transformation.

Performance Results
Figure 8 lists time (in seconds) spent by each of the
participants on each of the transformations in our task.
We recorded both the time spent on the first attempt to

Participants
Transformation 1 2 3 4 5

T1 Init 135 88 157 112 91
Fix 28 37 41

Total 163 125 157 112 132
T2 Init 84 174 93 136 219
Total 84 174 93 136 219

T3 Init 75 80 43 91 44
Fix 8

Total 75 88 43 91 44
T4 Init 46 48 63 – –

Fix 22
Total 68 48 63 – –

T5 Init 131 118 – 55 102
Total 131 118 – 55 102

T6 Init 16 138 94 47 39
Fix 166 20 60

Total 182 138 94 67 99

Figure 8. Time in seconds spent by each of the partici-
pants on each of the transformation tasks. “Init” is the
time spent on the initial attempt. “Fix” is the time spent
on a subsequent correction, if any. “Total” is total time
spent for a transformation. Some times are absent be-
cause not all participants attempted all transformations.

construct a transformation (“Init”) and the time spent
on any subsequent modification (“Fix”). Subsequent
modifications were necessary because some of the par-
ticipants made mistakes on the first attempt without
realizing it. Later, they went back to an earlier trans-
formation from the pending transformation list to cor-
rect their mistakes. We also computed total transforma-
tion time, though there was a great amount of variation
among the participants depending on the order in which
the participants attempted the transformations.

While drawing general conclusions from these times is
dangerous because not all transformations are of the
same difficulty, we observed that participants’ fluency
increased with experience with the tool. This can be
seen from the times for transformations T2 and T3: ev-
ery participant attempted these transformations in se-
quence because the targets of the transformations oc-
cur close together in the source code. These transfor-
mations are comparable in pattern complexity, and the
second transformation in the sequence was completed
more quickly than the first by every participant.

Cognitive Dimensions Evaluation
We evaluated the transformation tool along twelve cog-
nitive dimensions, but for brevity report on only six
here. The participants were given an opportunity to in-
clude a verbal description of the issues related to each
dimension. Boshernitsan [6] provides a detailed discus-
sion of the questionnaire results.

The participants felt that visibility of the transforma-
tion description language was good and that it was easy
to see and find various parts of the transformation de-
scription as they were working with it. One participant
expressed concern about the long name references in
the transformation action (and two others noted this
problem in response to a different dimension). The
participants noted that viscosity (resistance to change)
was low, with one participant observing that making

changes was “much easier than [he] expected.” Another
participant appreciated the ability to make changes to
the completed transformations by taking them out of
the pending transformation list. The participants re-
ported moderate diffuseness, indicating that the trans-
formation descriptions were reasonably concise, while
remaining easily readable.

iXj received high marks on role expressiveness—when
looking at the transformations it was easy to tell the
purpose of each element in the overall scheme. The
participants stated that “it is obvious where each part
comes from,” and thanked us for “not showing these as
a tree.” The participants reported that we achieved rea-
sonable closeness of mapping between the transforma-
tion description and their understanding of the program
structure. One participant noted: “The pattern looks,
visually, like source code. It makes sense to edit it as an
example of the change you want to make and convert
things to wildcards where they are unnecessarily spe-
cific.” Another participant commended our design for
“great indication of wildcarding.”

Most of the participants were satisfied with iXj’s pro-
gressive evaluation capabilities. One participant noted
that he had trouble “mak[ing] sure [he] had grabbed
all matches that [he] intended.” This problem was also
mentioned by other participants in the post-study inter-
view. The participants felt comfortable with exploring
various directions because it was “fast to make changes”
and they could “see the code change right away.” One
participant particularly liked “going back and forth from
wildcard to the original part [to see] the effect of con-
verting to a wildcard.”

Participants’ comments on the error-proneness dimen-
sion indicated that this aspect of our design needs more
work. One participant indicated that “[he] was often
not sure that [he] made the pattern sufficiently generic.”
Two other participants noted that it is easy to mistype
a variable name in the transformation action. Another
participant disliked small icons for pattern box controls.

Most participants felt that they could work on a trans-
formation in any order, avoiding premature commitment.
One participant indicated that the ordering of several
related transformations can be important for organiz-
ing one’s work, although the tool does not enforce any
restrictions.

Common Mistakes, Errors, and Misconceptions
We analyzed screen and audio recording of each of the
evaluation sessions to classify participants’ mistakes, er-
rors, and misconceptions. Mistakes are the slips that
the participants made when constructing transforma-
tions. Mistakes were usually corrected at some point
during the transformation session, if not immediately.
Errors are more fundamental. Often, the participants
did not realize that they introduced an error and that
their final transformation was incorrect. Misconceptions
caused the participants to pause the transformation pro-
cess and to consult the interviewer.

We traced many mistakes to small issues with iXj’s in-
teraction model. For example, forgetting to click out-
side of the editable text field to cause the input to be
accepted is easily remedied. Some mistakes, such as
clicking on the wrong icon, were due to the participants’
unfamiliarity with the tool. Since the participants were
given no time to practice with the user interface, we
expect these mistakes to subside with practice.

By contrast, insufficient wildcarding of the transforma-
tion pattern emerged as a common problem. Several
participants indicated that they had trouble deciding
when the pattern has enough wildcards to match all
places in the source code needing transformation. This
result contrasts with our initial design intuition that the
programmers will be able to “reason” about a transfor-
mation and will add all of the necessary wildcards based
on the intent of the transformation. We plan to fix this
by implementing an approximate pattern-matching al-
gorithm. The approximate matches will indicate to the
user which variations of the pattern structure exist in
the program and which parts of the transformation can
be wildcarded to affect more code fragments. This ap-
proach will reduce the need for the upfront wildcarding
in anticipation of possible matches.

We traced all of the transformation errors to the partic-
ipants’ unfamiliarity with the subject source code and
with the StreamTokenizer and Scanner APIs. These
errors were not related to their use of iXj. We ob-
served several misconceptions about some of the struc-
tural elements in the transformation description lan-
guage. Boshernitsan [6] discusses these misconceptions
in detail; we intend to address them in the future ver-
sions of our design.

Discussion and Observations
The evaluation confirmed our hypothesis: the partici-
pants learned the transformation language and the trans-
formation editor quickly and completed the transforma-
tion task successfully. During the post-study interview
all participants reported that they found the transfor-
mation description language intuitive. They confirmed
comprehensibility of the exposed source code structure,
and indicated that they had no trouble understanding
and manipulating the transformation descriptions. Sev-
eral participants expressed interest in using the trans-
formation tool in their daily source code maintenance
activities.

The evaluation strategy was limited in several respects.
First, the transformation task presented to the partic-
ipants was simple and was executed on a small source
code base. These restrictions were needed to ensure that
the evaluation session could be completed within reason-
able time without tiring the participants. Second, the
participants only worked on a few hand-selected trans-
formation tasks. Because of this they were only exposed
to some aspects of the transformation tool. Given more
time with the tool, it is possible that the participants
would have discovered additional issues not observed in
our study. Third, the number of participants was small,

and so may not be fully representative of the user pop-
ulation. We are planning a more thorough evaluation
of the transformation tool through study of program-
mers using iXj on their own code over a period of time.
This study will inform us of the scalability of the vi-
sual approach for more complex transformation tasks
in real-world systems.

CONCLUSION
We present a tool that enables programmers to per-
form systematic source code transformations easily and
with a high degree of confidence in the results. The de-
sign consists of a novel visual language for describing
and prototyping source code transformations and of a
user-interaction model that simplifies learning and use
of this language. We used several user-centered tech-
niques to create a design that aligns the representations
used by the tool with the programmers’ mental model
of programming structures. We built and evaluated a
prototype implementation that allows programmers to
make transformations in an intuitive manner.

We are currently developing a successor to the iXj pro-
totype that will be publicly available. We will use this
tool for further evaluation and refinement of our design.

Enabling programmers to manipulate source code with
lightweight language-based program transformations re-
duces the effort expended on making certain types of
large and sweeping changes. In addition to the imme-
diate improvements to programmers’ efficiency, this re-
duction in effort has the potential for lessening program-
mer’s long-term resistance to making design-improving
changes, ultimately leading to higher quality software.

ACKNOWLEDGMENTS
We would like to thank the participants in the evalu-
ation of iXj for their time and effort. We would also
like to thank the anonymous reviewers for their help-
ful comments and suggestions. The research described
in this paper has been supported in part by the NSF
Grants CCR-9988531 and CCR-0098314, IBM Eclipse
Innovation Grant, and by Agitar Software, Inc.

REFERENCES
1. XSL transformations (XSLT), version 1.0. World Wide Web

Consortium, Recommendation, Nov. 1999.

2. G. J. Badros. JavaML: a markup language for Java source
code. Computer Networks, 33(1–6):159–177, June 2000.

3. I. D. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program
transformations for practical scalable software evolution. In
Proc. of ICSE ’04, pages 625–634, 2004.

4. A. F. Blackwell. SWYN: A visual representation for regular
expressions. In H. Lieberman, editor, Your Wish Is My
Command. Morgan Kauffman, 2001.

5. A. F. Blackwell and T. R. G. Green. A cognitive dimensions
questionnaire optimised for users. In A. Blackwell and
E. Bilotta, editors, Proc. of PPIG 13, May 2000.

6. M. Boshernitsan. Program Manipulation via Interactive
Transformations. PhD thesis, EECS Department, University
of California, Berkeley, July 25 2006. Technical Report
UCB/EECS-2006-100.

7. M. Boshernitsan and S. L. Graham. Designing an
XML-based exchange format for harmonia. In Proc. of
WCRE ’00, pages 287–289, 2000.

8. S. Burson, G. B. Kotik, and L. Z. Markosian. A program
transformation approach to automating software
reengineering. In Proc. of ICSAC ’90, pages 314–322, 1990.

9. M. L. Collard, J. I. Maletic, and A. Marcus. Supporting
document and data views of source code. In Proc. of
DocEng ’02, pages 34–41, 2002.

10. J. R. Cordy, T. R. Dean, A. J. Malton, and K. A. Schneider.
Software engineering by source transformation-experience
with TXL. In Proc. of SCAM ’01, pages 170–180, 2001.

11. J. R. Cordy, C. D. Halpern-Hamu, and E. Promislow. TXL:
A rapid prototyping system for programming language
dialects. Comput. Lang, 16(1):97–107, 1991.

12. F. Detienne. Software Design - Cognitive Aspects. Springer
Verlag, 2001.

13. A. A. diSessa and H. Abelson. Boxer: a reconstructible
computational medium. CACM, 29(9):859–868, 1986.

14. D. Dougherty. sed & awk. O’Reilly & Associates, Inc., 1991.

15. M. Erwig. A visual language for XML. In Proc. of VL ’00,
page 47, 2000.

16. T. R. G. Green. Cognitive dimensions of notations. In Proc.
of HCI’89, Cognitive Ergonomics, pages 443–460, 1989.

17. W. G. Griswold, D. C. Atkinson, and C. McCurdy. Fast,
flexible syntactic pattern matching and processing. In Proc.
of WPC ’96, 1996.

18. H. Hosoya and B. C. Pierce. XDuce: A statically typed
XML processing language. ACM Transactions on Internet
Technology, 3(2):117–148, May 2003.

19. D. E. Knuth. The errors of TEX. Software– Practice and
Experience, 19(7):607–681, July 1989.

20. D. A. Ladd and J. C. Ramming. A∗: A language for
implementing language processors. IEEE Transactions on
Software Engineering, 21(11):894–901, Nov. 1995.

21. J. Landauer and M. Hirakawa. Visual AWK: a model for
text processing by demonstration. In Proc. of VL ’95, 1995.

22. R. C. Martin and R. S. Koss. Engineer notebook: An
extreme programming episode. In R. C. Martin, editor,
Advanced Principles, Patterns and Process of Software
Development. Prentice Hall, 2001.

23. R. C. Miller and B. A. Myers. Interactive simultaneous
editing of multiple text regions. In Proc. of USENIX ATC
’01, pages 161–174, 2001.

24. R. P. Nix. Editing by example. ACM Trans. Program. Lang.
Syst., 7(4):600–621, 1985.

25. E. Pietriga, J.-Y. Vion-Dury, and V. Quint. VXT: A visual
approach to XML transformations. In Proc. of DocEng ’01,
pages 1–10, 2001.

26. D. Roberts and J. Brant. Tools for making impossible
changes. IEE Proceedings Software, 151(2):49–56, 2004.

27. D. Roberts, J. Brant, and R. E. Johnson. A refactoring tool
for Smalltalk. Theory and Practice of Object Systems,
3(4):253–263, 1997.

28. E. B. Swanson. The dimensions of maintenance. In Proc. of
ICSE ’76, pages 492–497, 1976.

29. E. Visser. Program transformation with Stratego/XT. In
C. Lengauer et al., editors, Domain-Specific Program
Generation, volume 3016 of Lecture Notes in Computer
Science, pages 216–238. Spinger-Verlag, June 2004.

30. R. C. Waters. Program translation via abstraction and
reimplementation. IEEE Transactions on Software
Engineering, 14(8):1207–1228, Aug. 1988.

31. I. H. Witten and D. Mo. TELS: learning text editing tasks
from examples. pages 183–203, 1993.

