Ads and Attention

Hal Varian

September 7, 2011

Google™
Outline

▶ Online ad auctions
▶ Newspaper ads
▶ TV ads
▶ Stock purchases
▶ Commodity ads
Search results and ads
Why ad auction?

Why sell ads via an auction?

- Millions of keywords to price
Why ad auction?

Why sell ads via an auction?

- Millions of keywords to price
- Positions (slots) have quite different values
Why ad auction?

Why sell ads via an auction?

- Millions of keywords to price
- Positions (slots) have quite different values
- Advertisers want to change bids in real time
Why ad auction?

Why sell ads via an auction?

- Millions of keywords to price
- Positions (slots) have quite different values
- Advertisers want to change bids in real time
- Cost of entry to auction by advertisers is very low
Why ad auction?

Why sell ads via an auction?

- Millions of keywords to price
- Positions (slots) have quite different values
- Advertisers want to change bids in real time
- Cost of entry to auction by advertisers is very low
- Auction does a very good job at rent extraction
Notation

- $a = \text{index for advertiser } a = 1, \ldots, A$
- $s = \text{index for slots } s = 1, \ldots, S$
- $b_a = \text{bid per click of advertiser } a$
- $v_a = \text{value per click of advertiser } a$
- $p_s = \text{equilibrium price per click paid by the advertiser in slot } s$
- $e_a = \text{advertiser-specific CTR for advertiser } a$
- $x_s = \text{position-specific CTR for slot } s. \text{ Assume } x_s > x_{s+1}$.
- $z_{as} = \text{clickthrough rate of advertiser } a \text{ in slot } s$
 - actual clicks = ad CTR \times position CTR
 - $z_{as} = e_a \times x_s$
Rules of auction

Rules of Generalized Second Price auction (GSP)

1. Each advertiser \(a\) chooses a bid \(b_a\).
2. The advertisers are ordered by bid times adv-specific CTR rate \((b_a e_a)\).
3. The price that advertiser \(a\) pays for a click is the minimum necessary to retain its position.
4. If there are fewer bidders than slots, some slots are unfilled and the last bidder pays a reserve price \(r\).

Ranking:

\[b_1 e_1 > b_2 e_2 > \ldots > b_m e_m \]

Pricing:

\[
\begin{align*}
 p_s e_s &= b_{s+1} e_{s+1} \\
 p_s &= \frac{b_{s+1} e_{s+1}}{e_s}
\end{align*}
\]
Rationale

▶ **Question.** Why not just rank ads by bid for clicks?

Better to rank ads by expected revenue. Price times quantity is what matters. Joe's Jets has high-value click but few sales. Moe's Models has low-value click but many sales. Auction is really an auction for impressions. bid per impression = bid per click × clicks per impression. search engine has impressions to sell, but advertisers want to pay for clicks. I want to pay in dollars, you want to get paid in euros. Clickthrough rates is the exchange rate. For rest of this exposition, assume e ≡ 1.

Hal Varian Ad-tention
Question. Why not just rank ads by bid for clicks?
Answer: Better to rank ads by expected revenue.
- Price times quantity is what matters
- Joe’s Jets has high-value click but few sales
- Moe’s Models has low-value click but many sales
Rationale

- **Question.** Why not just rank ads by bid for clicks?
- **Answer:** Better to rank ads by *expected revenue*.
 - Price times quantity is what matters
 - Joe’s Jets has high-value click but few sales
 - Moe’s Models has low-value click but many sales
- Auction is really an auction for impressions
Question. Why not just rank ads by bid for clicks?

Answer: Better to rank ads by *expected revenue*.

- Price times quantity is what matters
- Joe’s Jets has high-value click but few sales
- Moe’s Models has low-value click but many sales

Auction is really an auction for impressions

- bid per impression = bid per click \times \text{clicks per impression}
Question. Why not just rank ads by bid for clicks?

Answer: Better to rank ads by expected revenue.

- Price times quantity is what matters
- Joe’s Jets has high-value click but few sales
- Moe’s Models has low-value click but many sales

Auction is really an auction for impressions

- bid per impression = bid per click \times \text{clicks per impression}
- search engine has impressions to sell, but advertisers want to pay for clicks
Rationale

- **Question.** Why not just rank ads by bid for clicks?
- **Answer:** Better to rank ads by *expected revenue*.
 - Price times quantity is what matters
 - Joe’s Jets has high-value click but few sales
 - Moe’s Models has low-value click but many sales
- **Auction is really an auction for impressions**
 - bid per impression = bid per click × clicks per impression
 - search engine has impressions to sell, but advertisers want to pay for clicks
 - I want to pay in dollars, you want to get paid in euros
Question. Why not just rank ads by bid for clicks?

Answer: Better to rank ads by expected revenue.

- Price times quantity is what matters
- Joe’s Jets has high-value click but few sales
- Moe’s Models has low-value click but many sales

Auction is really an auction for impressions

- bid per impression = bid per click \times \text{clicks per impression}
- search engine has impressions to sell, but advertisers want to pay for clicks
- I want to pay in dollars, you want to get paid in euros

Clickthrough rates is the exchange rate
Rationale

▶ **Question.** Why not just rank ads by bid for clicks?
▶ **Answer:** Better to rank ads by *expected revenue*.
 ▶ Price times quantity is what matters
 ▶ Joe’s Jets has high-value click but few sales
 ▶ Moe’s Models has low-value click but many sales
▶ **Auction is really an auction for impressions**
 ▶ bid per impression = bid per click × clicks per impression
 ▶ search engine has impressions to sell, but advertisers want to pay for clicks
 ▶ I want to pay in dollars, you want to get paid in euros
▶ **Clickthrough rates is the exchange rate**
▶ **For rest of this exposition, assume** $e_a \equiv 1$.
Equilibrium conditions

Nash condition: adv in position $s + 1$ doesn’t want to move to up to s

\[
(v_{s+1} - p_{s+1})x_{s+1} \geq (v_{s+1} - p_s)x_s
\]

\[
p_s x_s \geq p_{s+1} x_{s+1} + v_{s+1}(x_s - x_{s+1})
\]

Interpretation

- advertisers compete for *incremental* clicks ($x_s - x_{s+1}$)
Equilibrium conditions

Nash condition: adv in position \(s + 1 \) doesn’t want to move to up to \(s \)

\[
(v_{s+1} - p_{s+1})x_{s+1} \geq (v_{s+1} - p_s)x_s \\
p_s x_s \geq p_{s+1} x_{s+1} + v_{s+1}(x_s - x_{s+1})
\]

Interpretation

- advertisers compete for *incremental* clicks \((x_s - x_{s+1})\)
- amount adv in slot \(s \) has to pay is enough to beat adv in \(s + 1 \)
Equilibrium conditions

Nash condition: adv in position $s+1$ doesn’t want to move to up to s

\[
(v_{s+1} - p_{s+1})x_{s+1} \geq (v_{s+1} - p_s)x_s \\
p_s x_s \geq p_{s+1} x_{s+1} + v_{s+1}(x_s - x_{s+1})
\]

Interpretation

- advertisers compete for *incremental* clicks $(x_s - x_{s+1})$
- amount adv in slot s has to pay is enough to beat adv in $s + 1$
- auction is efficient in that it awards best positions to adv with highest values
Equilibrium revenue

Start with Nash condition:

\[p_s x_s \geq p_{s+1} x_{s+1} + v_{s+1} (x_s - x_{s+1}) \]

Solve the recursion

\[
\begin{align*}
p_1 x_1 &\geq v_2 (x_1 - x_2) + v_3 (x_2 - x_3) + v_4 (x_3 - x_4) + \cdots + p_m x_m \\
p_2 x_2 &\geq v_3 (x_2 - x_3) + v_4 (x_3 - x_4) + \cdots + p_m x_m \\
p_3 x_3 &\geq v_4 (x_3 - x_4) + \cdots + p_m x_m \\
\end{align*}
\]

Add up to get

\[
\sum_{s} p_s x_s \geq v_2 (x_1 - x_2) + 2v_3 (x_2 - x_3) + 3v_4 (x_3 - x_4) + \cdots + (m-1)p_m x_m.
\]
Revenue bounds

Also true in equilibrium that advertiser doesn’t want to move down. Same sort of calculations give us an upper bound. (See paper for qualifications.)

\[
R_{dn} = v_2(x_1 - x_2) + 2v_3(x_2 - x_3) + \ldots + (m - 1)p_m x_m.
\]

\[
R_{up} = v_1(x_1 - x_2) + 2v_2(x_2 - x_3) + \ldots + (m - 1)p_m x_m.
\]

- Equilibrium revenue is between the two bounds
Revenue bounds

Also true in equilibrium that advertiser doesn’t want to move down. Same sort of calculations give us an upper bound. (See paper for qualifications.)

\[
R_{dn} = v_2(x_1 - x_2) + 2v_3(x_2 - x_3) + \ldots + (m - 1)p_m x_m.
\]

\[
R_{up} = v_1(x_1 - x_2) + 2v_2(x_2 - x_3) + \ldots + (m - 1)p_m x_m.
\]

- Equilibrium revenue is between the two bounds
- Generalization of \(m^{th} \) price auction (if \(x_s = 1 \))
Revenue bounds

Also true in equilibrium that advertiser doesn’t want to move down. Same sort of calculations give us an upper bound. (See paper for qualifications.)

\[
R_{dn} = v_2(x_1 - x_2) + 2v_3(x_2 - x_3) + \ldots + (m - 1)p_m x_m.
\]
\[
R_{up} = v_1(x_1 - x_2) + 2v_2(x_2 - x_3) + \ldots + (m - 1)p_m x_m.
\]

- Equilibrium revenue is between the two bounds
- Generalization of \(m^{th} \) price auction (if \(x_s = 1 \))
- Specialization of two-sided Demange-Gale-Sotomayor two-sided matching model (with arbitrary \(v_{as} \))
Revenue bounds

Also true in equilibrium that advertiser doesn’t want to move down. Same sort of calculations give us an upper bound. (See paper for qualifications.)

\[
R_{dn} = v_2 (x_1 - x_2) + 2v_3 (x_2 - x_3) + \ldots + (m - 1) p_m x_m.
\]

\[
R_{up} = v_1 (x_1 - x_2) + 2v_2 (x_2 - x_3) + \ldots + (m - 1) p_m x_m.
\]

- Equilibrium revenue is between the two bounds
- Generalization of \(m^{th} \) price auction (if \(x_s = 1 \))
- Specialization of two-sided Demange-Gale-Sotomayor two-sided matching model (with arbitrary \(v_{as} \))
- But here get explicit solution
What if attention was free?

- Suppose user was equally likely to click on each ad

Revenue reduces to $R_{dn} = (m - 1) p^m x_m$.

This is just an mth price auction. The difference between the two is the value of attention. Publisher gets to capture that value (search, TV, print).
What if attention was free?

- Suppose user was equally likely to click on each ad
- In that case, all clickthrough rates are equal: $x_1 = x_2 \cdots x_m$.

Revenue reduces to:

$$R_{dn} = (m-1)p_m x_m.$$

$$R_{up} = (m-1)p_m x_m.$$
What if attention was free?

- Suppose user was equally likely to click on each ad
- In that case, all clickthrough rates are equal: $x_1 = x_2 \cdots x_m$.
- Revenue reduces to

$$R_{dn} = (m - 1) p_m x_m.$$
$$R_{up} = (m - 1) p_m x_m.$$
What if attention was free?

- Suppose user was equally likely to click on each ad
- In that case, all clickthrough rates are equal: $x_1 = x_2 \cdots x_m$.
- Revenue reduces to

 $R_{dn} = (m - 1)p_m x_m$.
 $R_{up} = (m - 1)p_m x_m$.

- This is just an m^{th} price auction
What if attention was free?

- Suppose user was equally likely to click on each ad
- In that case, all clickthrough rates are equal: $x_1 = x_2 \cdots x_m$.
- Revenue reduces to
 \[
 R_{dn} = (m - 1)p mx_m.
 \]
 \[
 R_{up} = (m - 1)p mx_m.
 \]
- This is just an m^{th} price auction
- The difference between the two is the value of attention.
What if attention was free?

- Suppose user was equally likely to click on each ad
- In that case, all clickthrough rates are equal: $x_1 = x_2 \cdots x_m$.
- Revenue reduces to

$$R_{dn} = (m - 1)p_m x_m.$$
$$R_{up} = (m - 1)p_m x_m.$$

- This is just an m^{th} price auction
- The difference between the two is the value of attention.
- Publisher gets to capture that value (search, TV, print)
Much concern about economics of newspapers
Newspapers

- Much concern about economics of newspapers
- One claim: ad rates are much higher for offline
Newspapers

- Much concern about economics of newspapers
- One claim: ad rates are much higher for offline
- But is that really true?
Online and offline attention

- Offline news
 - Spend 24 minutes a day reading
 - Generates 88% of ad revenue
Online and offline attention

- Offline news
 - Spend 24 minutes a day reading
 - Generates 88% of ad revenue

- Online news
 - Spend 1.2 minutes a day
 - Generates 12% of ad revenue
Online and offline attention

- Offline news
 - Spend 24 minutes a day reading
 - Generates 88% of ad revenue

- Online news
 - Spend 1.2 minutes a day
 - Generates 12% of ad revenue

- Offline is 20 times as much time, but only 7 times more revenue
Online and offline attention

- Offline news
 - Spend 24 minutes a day reading
 - Generates 88% of ad revenue

- Online news
 - Spend 1.2 minutes a day
 - Generates 12% of ad revenue

- Offline is 20 times as much time, but only 7 times more revenue

- If readers spent the same amount of time in online reading, problems would go away
Online ad auctions
Newspapers
TV
Stocks
Food

Why the difference?

- Offline reading is leisure time activity
- Online reading is labor time activity
TV and YouTube

- **TV**
 - CPM is about $10
 - 20 ads in 1 hour
 - TV advertisers pay 20 cents/hour for your attention

- **YouTube**
 - CPM is about $1
 - 1 ad impression in 4 minutes
 - YouTube advertisers pay 15 cents/hour for your attention

- When a stock is “in the news” individual investors are much more likely to buy
- True for good news or bad news
- Asymmetry between buying and selling: individuals can only sell a few stocks but can buy many
Food ads

- Agricultural marketing boards
 - “Got milk?”
 - “It’s the cheese.”
 - “Pork, nature’s other white meat.”
 - “The incredible, edible egg.”
- But they work!
 - $1 billion per year in California alone
 - $1 spent on ads generates $3 to $6 of incremental revenue
Dancing raisins

- California raisins increased raisin sales 10 percent
- California raisin board: before the campaign raisens were “at best dull and boring” but afterwards, people were no longer “ashamed to each raisins.”
- “. . .otherwise people might forget to eat raisins.”
Raisin collectibles