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Abstract

This is a short and very elementary introduction to causal inference
in social science applications targeted to machine learners. I illustrate
the techniques described with examples chosen from the economics
and marketing literature.

1 A motivating problem1

Suppose you are given some data on ad spend and product sales in various2

cities and are asked to predict how sales would respond to a contemplated3

change in ad spend. If yc denotes per capita sales in city c and xc denotes4

per capita ad spend in city c it is tempting to run a regression of the form5

yc = bxc+ec where ec is an error term and b is the coefficient of interest.1 (The6

machine learning textbook by James et al. [2013] that describes a problem7

of this sort on page 59.)8

Such a regression is unlikely to provide a satisfactory estimate of the9

causal effect of ad spend on sales. To see why, suppose that the sales, yc, are10

per capita box office receipts for a movie about surfing and xc are per capita11

TV ads for that movie. There are only two cities in the data set: Honolulu,12

Hawaii and Fargo, North Dakota.13

1We assume all data has been centered, so we can ignore the constant in the regression.
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Suppose that the data set indicates that the advertiser spent 10 cents per14

capita on TV advertising in Fargo and observed $1 in sales per capita, while15

in Honolulu the advertiser spent $1 per capita and observed $10 in sales per16

capita. Hence the model yc = 10xc fits the data perfectly.17

But here is the critical question: do you really believe that increasing18

per capita spend in Fargo to $1 would result in box office sales of $10 per19

capita? For a surfing movie? This seems unlikely, so what is wrong with our20

regression model?21

The problem is that there is an omitted variable in our regression, which22

we may call “interest in surfing.” Interest in surfing is high in Honolulu23

and low in Fargo. What’s more, the marketing executives that determines24

ad spend presumably know this, and they choose to advertise more where25

interest is high and less where it is low. So this omitted variable—interest26

in surfing—affects both yc and xc. Such a variable is called a confounding27

variable.28

To express this point mathematically, think of (y, x, e) as being the pop-
ulation analogs of the sample (yc, xc, ec). The regression coefficient is given
by b = cov(x, y)/cov(x, x). Substituting y = bx + e, we have

b = cov(x, xb + e)/cov(x, x) = b + cov(x, e).

The regression coefficient will be unbiased when cov(x, e) = 0.229

If we are primarily interested in predicting sales as a function of spend30

and the advertiser’s behavior remain constant, this simple regression may be31

just fine. But usually simple prediction is not the goal; what we want to know32

is how box office receipts would respond to a change in the data generating33

behavior. The choice of ad expenditure was based on many factors observed34

by the advertiser; but now we want to predict what the outcome would35

have been if the advertiser’s choice had been different—without observing36

the factors that actually influenced the original choices.37

To put it slightly more formally: we have observations that were generated38

by a process such as“choose spend based on factors you think are important”,39

and we want to predict what would happen if we change to a data generating40

process such as “increase your spend everywhere by x percent.”41

2Note that problem is not inherently statistical in nature. Suppose that there is no
error term, so that the model “revenue = spend + interest in surfing” fits exactly. If we
only look at the variation in spend and ignore the variation in surfing interest, we get a
misleading estimate of the relationship between spend and revenue.
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It is important to understand that the problem isn’t simply that there is a42

missing variable in the regression. There are always missing variables—that’s43

what the error term represents. The problem is that the missing variable,44

“interest in surfing,” affects both the outcome (sales) and the predictor (ads),45

so the simple regression of sales on ads won’t give us a good estimate of the46

causal effect: what would happen to sales if we explicitly intervened and47

changed ad expenditure across the board.48

This problem comes up all the time in statistical analysis of human be-49

havior. In our example, the amount of advertising in a city, xc is chosen50

by some decision makers who likely have some views about how various fac-51

tors affect outcomes, yc. However, the analyst is not able to observe these52

factors—they are part of the error term, ec. But this means that it is very53

unlikely that xc and ec are uncorrelated. In our example, cities with high54

interest in surfing may have high ad expenditure and high box office receipts,55

meaning a simple regression of yc on xc would overestimate the effect of ad56

expenditure on sales.357

In this simple example, we have described a particular confounding vari-58

ables. But in realistic cases, there will be many confounding variables—59

variables that affect both the outcome and the variables we are contemplating60

changing.61

Everyone knows that adding an extra predictor to a regression will typi-62

cally change the values of the estimated coefficients on the other predictors63

since the relevant predictors are generally correlated with each other. Nev-64

ertheless, we seem comfortable in assuming that the predictors we don’t65

observe—those in the error term—are magically orthogonal to the predictors66

we do observe!67

The “ideal” set of data, from the viewpoint of the analyst, would be68

data from an advertiser with a totally incompetent advertiser who allocated69

advertising expenditures totally randomly across cities. If ad expenditure70

is truly random, then we don’t have to worry about confounding variables71

since the predictors will automatically be orthogonal to the error term. But72

statisticians are seldom lucky enough to have a totally incompetent client.73

There are many other examples of confounding variables in economics.74

Here are a few classic examples.75

3It wouldn’t have to be that way. Perhaps surfing is so popular in Honolulu that
everyone already knows about the movie and it is pointless to advertise it. Again, this is
the sort of thing the advertiser might know but the analyst doesn’t.
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How does fertilizer affect crop yields? If farmers apply more fertilizer76

to more fertile land, then more fertilizer will be associated with higher77

yields and a simple regression of fertilizer on outcomes will not give the78

true causal effect.79

How does education affect income? Those who have more education tend80

to have higher incomes, but that doesn’t mean that education caused81

those higher incomes. Those who have wealthy parents or high ability82

tend to acquire both more education and more income. Hence simple83

regressions of education on income tend to overstate the impact of edu-84

cation. (See James et al. [2013], p.283 for a machine learning approach85

to this problem and Card [1999] for an econometric approach.)86

How does health care affect income? Those who have good jobs tend87

to have health care, so a regression of health care on income will show88

a positive effect but the direction of the causality is unclear.89

In each of these cases, we may contemplate some intervention that will90

change behavior.91

• How would crop yields change if we change the amount of fertilizer92

applied?93

• How would income change if we reduce the cost of acquiring education?94

• How would income change if we changed the availability of health care?95

Each of these policies is asking what happens to some output if we change96

an input and hold other factors constant. But the data was generated by97

parties who were aware of those other factors and made choices based on98

their perceptions. We want an answer to a ceteris paribus question, but our99

data was generated mutatis mutandis.100

2 Experiments101

As Box et al. [2005] put it “To find out what happens when you change102

something, it is necessary to change it.” As we will see, that may be slightly103

overstated, but the general principle is right: the best way to answer causal104

questions is usually to run an experiment.105
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However, experiments are often costly and in some cases are actually106

infeasible. Consider the example of the impact of education on income. An107

ideal experiment would require randomly selecting the amount of education108

students acquire, which would be rather difficult.109

But this is an extreme case. Actual education policies being contemplated110

might involve things like student loans or scholarships and small scale exper-111

iments with such policies may well be feasible. Furthermore, there may be112

“natural experiments” that can shed light on such issues without requiring113

explicit intervention.114

In an experiment, one applies a ‘treatment to some set of subjects and115

observes some outcomes. The outcomes for the treated subjects can be com-116

pared to the outcomes for the untreated subjects (the control group) to de-117

termine the causal effect of the treatment on the subjects.118

One may be interested in the “impact of the treatment on the popula-119

tion,” in which case one would like the subjects to be a representative sample120

from the population. Or one might be interested in the how the treatment121

affected those who actually were treated, in which case one is concerned with122

the “impact of the treatment on the treated.” Or you might be interested in123

those who were invited to be treated, whether or not they actually agreed to124

be treated; this is called an “intention to treat” analysis.125

If the proposed policy is going to be applied universally to some popu-126

lation, then one is likely interested in the impact of the treatment on the127

population. If the proposed policy to be implement involves voluntary par-128

ticipation, then one may be interested in the impact of the treatment on129

those who choose (or agree) to be treated.130

In marketing, we are often interested the how a change in advertising131

policies affects a particular firm—the impact of a treatment on a subject132

that chooses to be treated. This impact may well be different from a subject133

where treatment is imposed.134

3 Fundamental identity of causal inference135

Following Angrist and Pischke [2009] we can decompose the observed out-136

come of a treatment into two effects.137

Outcome for treated − Outcome for untreated138

= [Outcome for treated − Outcome for treated if not treated]139

+ [Outcome for treated if not treated − Outcome for untreated]140

5



= Impact of treatment on treated + selection bias141

142

The first bracketed term is the impact of the treatment on the treated while143

the second bracketed term is the selection bias—the difference in outcome144

between the treated if they were not treated, compared to the outcome for145

those who were, in reality not treated.146

This “basic identity of causal inference” shows that the critical concept147

for understanding causality is the comparison of the actual outcome (what148

happens to the treated) compared to the counterfactual (what would have149

happened if they were not treated), an insight that goes back to Neyman150

[1923] and Rubin [1974]. As Rubin emphasized, we cant actually observe151

what would have happened to the treated if they hadn’t been treated, so we152

have to estimate that counterfactual some other way.153

As an example, think of our Fargo/Honolulu data set. The true model is

yc = a + xcb + scd + ec,

where sc is a variable that measures “interest in surfing”. If the counterfac-154

tual is no ad expenditure at all, we would still see variation in revenue across155

cities due to sc. To determine the causal impact of additional ad expendi-156

ture on revenue, we have to compare the observed revenue to a counterfactual157

revenue that would associated with some default ad expenditure.158

By the way, the basic identity nicely shows why randomized trials are the159

gold standard for causal inference. If the treated group are a random sample160

of the population, then the first term is an estimate of the causal impact of161

the treatment on the population and if the assignment is random then the162

second term has an expected value of zero.163

4 Impact of an ad campaign164

Angrist and Pischke [2014] describe what they call the “Furious Five methods165

of causal inference:” random assignment, regression, instrumental variables,166

regression discontinuity, and differences in differences. We will outline these167

techniques in the next few sections, though we organize the topics slightly168

differently.169

As a baseline case for the analysis, let us consider a single firm that is170

running a randomized experiment to determine whether it is beneficial to171

increase its ad spend. We could imagine applying the increase in ad spend to172

6



Jun Jul Aug Sep

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

date

vi
si

ts
Train                             Test                              Treat                          Test

some consumers and not others, to some geographic location but not others,173

or at some time but not at other times.174

In each case, the challenge is to predict what would have happened if the175

treatment had not been applied. This is particularly difficult for an experi-176

ment, since the likelihood that a randomly chosen person buys a particular177

product during a particular period is typically very small. As Lewis and Rao178

[2013] have indicated, estimating such small effects can be very difficult.179

The challenge is here is something quite familiar to machine learning180

specialists—predictive modeling. We have time-tested ways to build such181

a model. In the simplest case, we divide the data into a training set and182

a test set and adjust the parameters on the training set until we find a183

good predictive model for the test set. Once we have such a model, we can184

apply it to the treated units to predict the counterfactual: what would have185

happened in the absence of treatment. This train-test-treat-compare process186

is illustrated in Figure 4.187
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The train-test-treat-compare cycle is a generalization of the classic treatment-188

control approach to experimentation. In that model, the control group pro-189

vides an estimate of the counterfactual. However, if we can build a predictive190

model that improves on predictions of what happens in the absence of treat-191

ment, all the better.192

The train-test-treat-compare cycle I have outlined is similar to the syn-193

thetic control method described by Abadie et al. [2010].4 Synthetic control194

methods use a particular way to build a predictive model of to-be-treated195

subjects based on a convex combination of other subjects outcomes. How-196

ever, machine learning offers a variety of other modeling techniques which197

may lead to better predictions on the test set and, therefore, better predic-198

tions of the counterfactual.199

One important caveat: we don’t want to use predictors that are correlated200

with the treatment, otherwise we run into the confounding variable problem201

described earlier. For example, during the Holiday Season, we commonly202

observe both an increase in ad spend and an increase in sales. So the “Holiday203

Season” is a confounding variable, and a simple regression of spend on sales204

would give a misleading estimate. The solution here is simple: pull the205

confounder out of the error term and model the seasonality as an additional206

predictor.207

5 Regression discontinuity208

As I indicated earlier, it is important to understand the data generating209

process when trying to develop a model of who was selected for the treatment.210

One particularly common selection rule is to use a threshold. In this case,211

observations close to, but just below, a threshold should be similar those212

close to, but just above, the threshold. So if we are interested in the causal213

effect of the threshold the threshold, comparing subjects on each side of the214

threshold is appealing.215

For example, Angrist and Lavy [1999] observes that in Israel, class sizes216

for elementary school students that have 40 students enrolled on the first day,217

remain at that size throughout the year. But classes with 41 or more students218

have to be divided in half, or as close to that as possible. This allows them219

to compare student performance in classes with 40 initial students to that220

4See also the time-series literature on interrupted regression, intervention analysis,
structural change detection, etc.
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Figure 1: Death rates by age by type.

with (say) 41 initial students (who end up with 20-person classes), thereby221

teasing out the causal effect of class size on educational performance. Since it222

is essentially random which side of the threshold a particular subject ends up223

on, so this is almost as good as random assignment to different sized classes.5224

Another nice example is the study by Valletti et al. [2014] that aims to225

estimate the impact of broadband speed on housing values. Just looking226

at the observational data is will not resolve this issue since houses in newer227

areas may be both more expensive and have better broadband connections.228

But looking at houses that are just on the boundary of internet service areas229

allows one to identify the causal effect of broadband on house valuation.230

As a final example, consider Carpenter and Dobkin [2011], who examine231

the impact of the minimum legal drinking age on mortality. The story is232

told in Figure 5, which is taken from this paper.6 As you can see, there is a233

major jump in motor vehicle accidents at the age of 21. Someone who is 20.5234

years old isn’t that different from someone who is 21 years old, on average,235

5The actual policies used are a bit more complicated than I have described; see the
cited source or Angrist and Pischke [2009] for a more detailed description.

6See also the helpful discussion in Angrist and Pischke [2014].

9



but 21 year olds have much higher death rates from automobile accidents,236

suggesting that the minimum drinking age causes this effect.237

Regression discontinuity design is very attractive when algorithms are238

used to make a choice. For example, ads may receive some special treatment239

such as appearing in a prominent position if they have a score that exceeds240

some threshold. We can then compare ads that just missed the threshold241

to those that just passed the threshold to determine the casual effect of the242

treatment. Effectively, the counterfactual for the treated ads are the ads243

that just missed being treated. See Narayanan and Kalyanam [2014] for an244

example in the context of ranking search ads.245

Even better, we might explicitly randomize the algorithm. Instead of246

a statement like if (score > threshold) do treatment we have a state-247

ment like if (score + e > threshold) do treatment, where e is a small248

random number. This explicit randomization allows us to estimate the causal249

effect of the treatment on outcomes of interest. Note that restricting e to250

be small means that our experiment will not be very costly compared to the251

status quo since only cases close to the threshold are impacted.252

6 Natural experiments253

If there is a threshold involved in making a decision, by focusing only on254

those cases close to the threshold we may have something that is almost as255

good as random assignment to treatment and control. But we may be able256

to find a “natural experiment” that is “as good as random.”257

Consider, for example, the Super Bowl. It is well known that the home258

cities of the teams that are playing have an audience about 10-15% larger259

than cities not associated with the teams playing. It is also well known260

that companies that advertise during the Super Bowl have to purchase their261

ads months before it is known which teams will actually be playing. The262

combination of these two facts implies that two essentially randomly chosen263

cities will experience a 10% increase in ad impressions for the movie titles264

shown during the Super Bowl. If the ads are effective, we might expect to265

see an increase in interest in those movies in the treated cities, as compared266

to what the interest would have been in the absence of a treatment.267

We measure interest in two ways: the number of queries on the movie268

title for all the movies and the opening weekend revenue, which could be269

obtained only for a subset of the movie titles. We use data for the cities270
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whose teams are not playing to estimate the boost in query volume after271

being exposed to the ad as compared to before, and use this to estimate272

the counterfactual: what the boost would have been without the 10-15%273

additional ad impressions in those cities associated with the home teams.274

The results are shown in Figure 2. As can easily be seen, those extra ad275

impressions made a big difference!276

Details of the analysis are available in Stephens-Davidowitz et al. [2014].277

Hartmann and Klapper [2014] independently applied the same idea to sales278

of soft drinks and beer that were advertised in Super Bowls.279

7 Instrumental variables280

Let us compare the Super Bowl example to the motivating example that281

started this paper, yc = a + bxc + ec. The advertiser may well determine282

ad expenditure based on various factors that also influence outcomes, so we283

can’t expect xc to be orthogonal to ec. However, part of ad expenditure is284

essentially randomly determined since it depends on which teams actually285

end up playing in the Super Bowl. So some observable part of xc is indepen-286

dent of the error term and thus allows us to see how an essentially random287

variation in spend (or viewership) affects outcomes.288

A variable that affects yc only via its effect on xc is called an instrumental289

variable. Think of this variable as a physical instrument that moves xc around290

independently of any movements in ec. In the Super Bowl example, winning291

the playoffs is such an instrument, since it effectively increases viewership in292

two essentially randomly chosen cities.293

We can express this mathematically using the following two equations:294

yc = bxc + ec (1)

xc = azc + dc (2)

Letting y, x, e . . . be the population analogs of which yc, xc, ec . . . are the295

realizations, we face the confounding variable problem when cov(x, e) 6= 0.296

But if we can find an instrument z such that cov(z, x) 6= 0 (z affects x) but297

cov(z, e) = 0 then we can still estimate the casual effect of x on z.298

In fact, in this case the IV estimate is simply

biv =
cov(z, y)

cov(z, x)
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To see why this works, substitute the definition of y:299

biv =
cov(z, bx + e)

cov(z, x)
(3)

=
b cov(z, x) + cov(z, e)

cov(z, x)
(4)

= b (5)

This calculation is correct only for the population. However, it can be300

shown that the sample analog of these computations gives you a good esti-301

mate of the casual effect for large sample sizes.302

To take another example suppose you want to estimate how the demand
for air travel responds to a change in ticket prices. Let yc be number of
tickets sold, pc the price of the tickets, and ec an error term. The natural
regression to run is

yc = bpc + ec.

But by now we should be familiar with the problem: the ticket prices are303

chosen by the airlines and will generally depend on factors in the error term.304

For example, if the economy is booming airlines might increase prices and if305

the economy is slow they might decrease prices. But the state of the economy306

affects not only the price of tickets but also the amount of air travel, so it is307

a confounding variable.308

One solution is to figure out some proxy for the state of the economy309

and add that as a predictor in the regression. Another solution is to find a310

variable that affects ticket price but is uncorrelated with the error term. For311

example, a change in the taxes on air travel could provide such an instrument.312

8 Difference in differences313

In estimating causal effects it is helpful to have longitudinal data—data for314

individual units across time. For example, we might have data on adver-315

tising expenditures across DMA (Designated Marketing Areas). Prior to a316

campaign there is zero spend, during the campaign there is spending at some317

level in certain DMAs but not in others.318

In the simplest case, the outcome is xtd at time t in DMA d. Time319

is labeled B for “before” and A for “after.” (As in “after the experiment320

commences.” If we think that the experiment will only have a temporary321
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effect, this could also be called “during the experiment.”) The DMAs are322

divided into two groups, indexed by T for treatment and C for control.323

We could consider comparing the treated groups before and after: xTA−324

xTB. However, it may be that something else happened while the experiment325

was progressing. To control for this, we compare the before-after change to326

the treated group to the before-after change of the control group: xCA−xCB.327

If the change in the treated group was the same as the change in the control328

group, it would suggest that there was no effect. Here the control group329

is simply estimate of the counterfactual: what would have happened to the330

treatment group if they weren’t treated.331

The final estimate is then the “difference in differences,”

[xTA − xTB]− [xCA − xCB],

which is simply the difference between what actually happened and an esti-332

mate of the counterfactual—what happened to those who were not treated.333

8.1 Example of difference-in-differences334

Let us consider the Fargo-Honolulu example described earlier. Suppose that335

Some DMAs were exposed to an ad (treated), some were not.336

• sTA = sales after treatment in treated groups337

• sTB = sales before treatment in treated groups338

• sCA = sales after treatment in control groups339

• sCB = sales before treatment in control groups340

We assemble these numbers into a 2 × 2 table and add a third column341

to show the estimate of the counterfactual.342

treatment control counterfactual
before sTB sCB sTB

after sTA sCA sTB + (sCA − sCB)

The counterfactual is based on the assumption that that the (unobserved)
change in purchases by the treated would be the same as the (observed)
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change in purchases by the control group. To get the impact of the treatment
we then compare the counterfactual to the actual:

effect of treatment on treated = (sTA − sTB)− (sCA − sCB)

This is a difference in differences. It might be more natural in this example to343

estimate a multiplicative model, which would then involve a “ratio of ratios”344

or a difference-of-differences in the logs of sales.)345

This is, of course very simple case. We can get an estimate of the sampling346

variation in sales using a bootstrap. Or we can express this as a regression347

model and additional predictors such as weather, news events, and other348

exogenous factors of this sort which impact box office revenue in addition to349

the ad expenditure.350

Note that the difference-in-differences calculation is giving us the impact351

of the treatment on the treated, unless, of course, the treatment is applied352

to a randomly chosen sample of the population.353

Differences in differences is in the same spirit as the train-test-treat ex-354

ample described earlier. There we built a predictive model for the outcome355

when no treatment was applied. Here we can build a predictive model for356

those units where no treatment was applied. We then apply this model to the357

treated units to get the counterfactual and then compare the actual outcome358

to the counterfactual.359

There are many examples of diff-in-diff in the economics literature. For360

a recent application to online advertising, see Black et al. [2015].361

9 Guide to further reading362

There are other more advanced approaches to causal modeling. Economists363

are fond of “structural equation modeling,” which involves building a specific364

model of the data generating behavior. For example, in the Honolulu/Fargo365

example, we might build a model of how marketing managers choose to366

allocate ad spend across cities and estimate the behavioral effects along with367

the responses. See Reiss and Wolak [2007] for a detailed survey.368

There is also a large literature on propensity scores, which is a way to369

estimate the probability that a particular subject is chosen for treatment.370

Such models can allow estimates of the “treatment on the treated” to be371

extrapolated to estimates of the treatment on the population. See Rubin372

and Imbens [2013] for an up-to-date review.373
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There is also an emerging literature on causal methods for high-dimensional374

data that is motivated by genomics applications. See ETH [2015] and Insti-375

tute [2015] for a selection of papers in this area. The considerations described376

in this paper do not seem relevant to this literature, though I could be mis-377

taken.378

Finally, there are graphical methods pioneered by Pearl [2009, 2013] that379

allow one to analyze complex models to determine when and how various380

causal effects can be identified.381

With respect to the econometrics literature, Angrist and Pischke [2014]382

provides a very accessible introduction and Angrist and Pischke [2009] pro-383

vides a somewhat more advanced description of the methods outlined here.384
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