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Abstract

This article describes a system for short term forecasting based on an ensemble prediction
that averages over different combinations of predictors. The system combines a structural
time series model for the target series with regression component capturing the contributions
of contemporaneous search query data. A spike-and-slab prior on the regression coefficients
induces sparsity, dramatically reducing the size of the regression problem. Our system averages
over potential contributions from a very large set of models and gives easily digested reports of
which coefficients are likely to be important. We illustrate with applications to initial claims
for unemployment benefits and to retail sales. Although our exposition focuses on using search
engine data to forecast economic time series, the underlying statistical methods can be applied
to more general short term forecasting with large numbers of contemporaneous predictors.

1 Introduction

For reasons of cost, effort, or convention, many economic time series are reported infrequently

(e.g. on a monthly or quarterly basis) despite being theoretically observable on finer time scales.

Economic time series are also frequently revised after they are first reported, as new information

becomes available. Modern econometric methods make it is possible to maintain a current estimate

of the value of an economic time series before it is officially reported or revised. This problem is

sometimes called “nowcasting” because the goal is to forecast a current value instead of a future

value (Banbura et al., 2011). An effective nowcasting model will consider both the past behavior

of the series being modeled, as well as the values of more easily observed contemporaneous signals.

This article focuses on economic time series, but the nowcasting problem is present in other fields

as well. Google Flu Trends (Google.org, 2012) is an early example. See Shaman and Karspeck

(2012) and Dukic, Polson, and Lopes (2012) for others.

Choi and Varian (2009, 2012) demonstrated that Google search data could be used as an effective

external signal for a nowcasting model, but their methods required carefully selecting the set of

predictors to be used. This article describes a more robust and automatic system for selecting
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the predictors in a nowcasting model. Our system uses a structural time series model (Harvey,

1989) to capture the trend, seasonal, and similar components of the target series. A regression

component in the structural model incorporates contributions from contemporaneous explanatory

factors. Because the number of potential predictors in the regression model is large (often larger

than the number of observations available to fit the model), we induce sparsity by placing a spike-

and-slab prior distribution on the regression coefficients. This leads to a posterior distribution with

positive mass at zero for sets of regression coefficients, so that simulated values from the posterior

distribution have many zeros. We use a Markov chain Monte Carlo (MCMC) sampling algorithm

to simulate from the posterior distribution, which smooths our predictions over a large number of

potential models using Bayesian model averaging (Hoeting et al., 1999; Madigan and Raftery, 1994).

As a by-product of the Bayesian analysis, our method also gives compelling reports indicating the

marginal posterior inclusion probability for each predictor, and a graphical breakdown of how the

model has apportioned time series variation between different components of state.

Our methods differ from forecasting techniques that handle large numbers of predictors by

constructing latent factors. We do not directly model the distribution of our regressors, as would

be the case in a dynamic factor model (e.g. Forni and Reichlin, 1998; Forni et al., 2000). An alternate

approach is to construct static factors through methods like principal components (e.g. Stock and

Watson, 2002a,b). One could argue that we use implicitly use static factors by considering the

query verticals produced by Google Trends (see Section 2) instead of raw queries. This reduces

many billions of raw queries to several hundred query verticals, but we do not attempt to further

reduce the dimension by constructing factors out of verticals.

Figure 1 shows an example of the type of data we might want to model in a nowcast. It plots

weekly initial claims for unemployment in the US. The initial claims data has a pronounced seasonal

pattern, and clear bulge during the 2008 - 2010 financial crisis. The hope is that by using Google

search queries as a proxy for public interest in unemployment related matters we can gain a clearer

view of the current state of the series than we can by relying on the past behavior of the series

alone.

The remainder of this article is structured as follows. Section 2 describes Google search data.

Section 3 describes the structural time series models used to capture the trend and seasonal com-

ponents of the prediction, as well as the regression component of the model, where Bayesian model

averaging is used to account for the uncertainty in which predictors are to be included. Section 4

describes a Markov chain Monte Carlo algorithm used to produce simulations from the Bayesian

posterior distribution of both the structural time series and the regression components of the model.

Section 5 illustrates how the method works on two time series chosen from the FRED database.

Section 6 offers some concluding remarks.
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Figure 1: Weekly (non-seasonally adjusted) initial claims for US unemployment benefits.

2 Google search data

Google search query data is interesting because it offers a quasi-real time view into the topics of

greatest interest to the public. Google offers two public tools for obtaining search query data, Google

Trends (google.com/trends) and Google Correlate (google.com/trends/correlate). The input into

Google Trends is a specific search query (e.g. “file for unemployment”). The output is a time

series of the relative popularity of that search query over time. The time series is normalized by

the overall search volume, so that it represents the fraction of overall search traffic for that query,

and it is scaled so that the maximum of the time series is 100. The series can be restricted to a

particular time range (with the earliest date being January 2004) or geographic area, such as a

country, or a state within the United States. The context of the search query can also be restricted

to lie within a set of pre-defined “verticals,” such as Entertainment, Science, Automotive, etc. The

verticals have a hierarchical structure that can represent different levels of granularity. For example

the Automotive vertical has a Hybrid and Alternative Vehicles subvertical. Across all levels there

are about 600 search verticals, which are normalized and scaled in the same manner as individual

search queries.

Google Correlate takes as input a time series, which can be the name of individual search query,

or a time series uploaded by the user. It then finds the set of individual search queries that are

most highly correlated with the input. Google Correlate will provide up to 100 correlates. These

can be restricted by geography, but not by vertical. A screen shot of the tool is shown in Figure 2.

The combination of Google Trends and Google Correlate means that as many as 700 predictors
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Figure 2: The interface to Google Correlate, showing the top 10 correlates to the data in Figure 1, and a
plot of the initial claims series against the query for “Michigan Unemployment.”

are available for any time series one might wish to nowcast. The 600 verticals from Google Trends

will be the same regardless of the target series being modeled. The 100 individual queries from

Google Correlate will be specific to the time series being modeled.

3 The Model

Our nowcasting model has two components. A time series component captures the general trend

and seasonal patterns in the data. A regression component captures the impact of the Google

search query data. Because both components are additive, we can easily estimate the joint model

using Bayesian methods. Section 3.1 explains the time series component of our model. Section 3.2

discusses the regression component.

3.1 Structural time series

Let yt denote observation t in a real-valued time series. A structural time series model can be

described by a pair of equations relating yt to a vector of latent state variables αt.

yt = ZTt αt + εt εt ∼ N (0, Ht) (1)
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αt+1 = Ttαt +Rtηt ηt ∼ N (0, Qt) . (2)

Equation (1) is called the observation equation, because it links the observed data yt with the

unobserved latent state αt. Equation (2) is called the transition equation because it defines how

the latent state evolves over time. The model matrices Zt, Tt, and Rt typically contain a mix of

known values (often 0 and 1), and unknown parameters. The transition matrix Tt is square, but Rt

can be rectangular if a portion of the state transition is deterministic. Having Rt in equation (2)

allows the modeler to work with a full rank variance matrix Qt because any linear dependencies in

the state vector can be moved from Qt to Rt. In our application Ht is a positive scalar. A model

that can be described by equations (1) and (2) is said to be in state space form. A very large class

of models can be expressed in state space form, including all ARIMA and VARMA models.

State space models are attractive in part because they are modular. Independent state com-

ponents can be combined by concatenating their observation vectors Zt, and arranging the other

model matrices as elements in a block diagonal matrix. This provides the modeler with consider-

able flexibility choose components for modeling trend, seasonality, regression effects, and potentially

other state components that may be necessary. For example, one useful model can be obtained by

adding a regression component to the popular “basic structural model.” This model can be written

yt = µt + τt + βTxt + εt

µt = µt−1 + δt−1 + ut

δt = δt−1 + vt,

τt = −
S−1∑
s=1

τt−s + wt

(3)

where ηt = (ut, vt, wt) contains independent components of Gaussian random noise. Though the

model matrices in a structural time series model are permitted to depend on t, in this case Qt is

a constant diagonal matrix with diagonal elements σ2u, σ
2
v , and σ2w, and Ht is a constant σ2ε . This

model contains trend, seasonal, and regression components. The current level of the trend is µt,

the current “slope” of the trend is δt. The seasonal component τt can be thought of as a set of S

dummy variables with dynamic coefficients constrained to have zero expectation over a full cycle

of S seasons. We will provide more details on the regression component in Section 3.2, but for

the remainder of this Section one may consider β to be known. The parameters in equation (3)

are the variances σ2ε , σ
2
u, σ

2
v , σ

2
w and the regression coefficients β. In our context, the vector xt is

a contemporaneous set of search queries or trends verticals, including any desired lags or other

transformations. Of course xt can be extended to include other factors as well.

The primary tools for working with state space models are the Kalman filter (Kalman, 1960; Har-

vey, 1989), the Kalman smoother, and Bayesian data augmentation. Denote y1:t = y1, . . . , yt. The
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Kalman filter recursively computes the predictive distribution p(αt+1|y1:t) by combining p(αt|y1:t−1)

with yt using a standard set of formulas that is logically equivalent to linear regression. The Kalman

smoother updates the output of the Kalman filter to produce p(αt|y1:n), where n is the length of

the time series, at each value of t. Because all components of the model are Gaussian, both

p(αt+1|y1:t) and p(αt|y1:n) are multivariate normal distributions parameterized by their mean µt

and variance Pt. The Kalman filtering accumulates information about the time series as it moves

forward through the list of (µt,Pt) elements. The Kalman smoother moves backward through

time, distributing information about later observations to successively earlier (µt,Pt) pairs. The

forward-backward pattern is idiomatic for general message passing algorithms (Cowell et al., 1999),

of which the Kalman filter and smoother are special cases. Readers interested in the computational

details of the Kalman filter and smoother can consult Durbin and Koopman (2001) or numerous

other sources.

Filtering and smoothing are the traditional computational operations associated with state space

models. A third, related task often arises in Bayesian computation, in which it is often desirable to

simulate the state from its posterior distribution given the data. Let y = y1:n and α = α1:n denote

the full sets of observed and latent data. Bayesian data augmentation methods produce simulations

from p(α|y). One cannot simply draw each αt from p(αt|y), because the serial correlation between

αt and αt+1 must be respected. Instead, there are stochastic versions of the Kalman smoother that

can be used to sample directly from p(α|y). Important early algorithms from Carter and Kohn

(1994) and Frühwirth-Schnatter (1995) were improved by de Jong and Shepard (1995) and Durbin

and Koopman (2002). Durbin and Koopman developed a way to simulate random noise with the

same covariance as p(α|y), to which they add the appropriate mean, which can be computed using a

fast “state mean smoother.” Rue (2001), McCausland et al. (2011), and Chan and Jeliazkov (2009)

suggest that even further efficiency gains can be had by avoiding the Kalman filter altogether and

treating the whole sampling algorithm as a sparse multivariate normal calculation to be handled

by sparse matrix routines. We use the Durbin and Koopman method in this paper.

3.2 Spike and slab regression

Equation (3) contains a regression component that allows a set of external factors to contribute

to the prediction. There are several ways of organizing the model matrices to add a regression

component to a state space model. A convenient method is to append a constant 1 to each αt, and

append βTxt to Zt in the observation equation. The advantage of this specification is that it only

increases the dimension of the state vector by one, regardless of the number of predictors. The

computational complexity of the Kalman filter is linear in the length of the data and quadratic in

the size of the state, so it is important to avoid artificially inflating the state size. If there is a small

set of regression coefficients that are believed to change over time, those coefficients can be added

to model as additional state variables. Otherwise, the rest of this Section focuses on regression
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coefficients that are constant through time.

3.2.1 Prior specification and elicitation

Because there are so many potential Google search queries, and economic time series are typically

short, the set of predictors can be much larger than the set of observations. However we expect a

high degree of sparsity, in the sense that the coefficients for the vast majority of predictors will be

zero. The natural way to represent sparsity in the Bayesian paradigm is through a spike and slab

prior on the regression coefficients. Let γk = 1 if βk 6= 0, and γk = 0 if βk = 0. Let βγ denote the

subset of elements of β where βk 6= 0. A spike-and-slab prior may be written

p(β, γ, σ2ε ) = p(βγ |γ, σ2ε )p(σ2ε |γ)p(γ). (4)

The marginal distribution p(γ) is the “spike,” so named because it places positive probability

mass at zero. In principle, p(γ) can be specified to control for best practices like the hierarchical

principle (lower order terms must be present if higher order interactions are included). In practice

it is convenient to simply use an independent Bernoulli prior

γ ∼
K∏
k=1

πγkk (1− πk)1−γk . (5)

Equation (5) is often further simplified by assuming all the πk are the same value π. This is a

practical consideration, because setting a different value for each πk can be a burden, but it can be

justified on the basis of prior exchangeability. A natural way to elicit π is to ask the analyst for

an “expected model size,” so that if one expects p nonzero predictors then π = p/K, where K is

the dimension of xt. In certain instances it can also be useful to set πk = 0 or 1, for specific values

of k, to force certain variables to be excluded or included. Another strategy that one could pursue

(but we have not) is to subjectively segment predictors into groups based on how likely they would

be to enter the model. One could then assign all the elements of each group the same subjectively

determined prior inclusion probability.

For a symmetric matrix Ω−1, let Ω−1
γ denote the rows and columns of Ω−1 corresponding to

γk = 1. Then the conditional priors p(1/σ2ε |γ) and p(βγ |σε, γ) can be expressed as the conditionally

conjugate pair

βγ |σ2ε , γ ∼ N
(
bγ , σ

2
ε

(
Ω−1
γ

)−1
) 1

σ2ε
|γ ∼ Ga

(ν
2
,
ss

2

)
, (6)

where Ga(r, s) denotes the gamma distribution with mean r/s and variance r/s2. Equation (6) is

the “slab” because one can choose the prior parameters to make it only very weakly informative

(close to flat), conditional on γ. As with equation (5) there are reasonable default values that

can be used to simplify equation (6). It is very common to assume the vector of prior means b is
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zero. However it is easy to specify an informative prior if one believes that certain predictors will

be particularly helpful. The values ss and ν (interpretable as a prior sum of squares, and prior

sample size) can be set by asking the user for an expected R2 from the regression, and a number

of observations worth of weight (ν) to be given to their guess. Then ss/ν = (1−R2)s2y, where s2y is

the marginal standard deviation of the response. Scaling by s2y is a minor violation of the Bayesian

paradigm because it means our prior is data-determined. However, it is a useful device, and we

have identified no practical negative consequences from using it.

The highest dimensional parameter in equation (6) is the full-model prior information matrix

Ω−1. Let X denote the design matrix, obtained in the standard way by stacking the predictors so

that xt is row t. The likelihood for an ordinary regression model has information matrix XTX/σ2ε ,

so taking Ω−1 = κXTX/n would place κ observations worth of weight on the prior mean b. This

is known as Zellner’s g−prior (Zellner, 1986; Chipman et al., 2001; Liang et al., 2008). Some care

must be exercised in practice to guard against perfect collinearity in the columns of X. Full rank

can be guaranteed by setting Ω−1 = κ(wXTX + (1 − w)diag(XTX))/n, where diag(XTX) is the

diagonal matrix with diagonal elements matching those of XTX. By default we set w = 1/2 and

κ = 1.

To recap, the spike and slab prior developed here offers ample opportunity to express prior

opinions through the prior parameters πk, b, Ω−1, ss, and ν. For the analyst who prefers simplicity

at the cost of some reasonable assumptions, useful prior information can be reduced to an expected

model size, an expected R2, and a sample size ν determining the weight given to the guess at R2.

For the analyst who wishes avoid thinking about priors altogether our software supplies default

values R2 = .5, ν = .01 and πk = .5.

3.2.2 The conditional posterior of β and σ2ε given γ

Let y∗t = yt − Z∗T
t αt, where Z∗

t is the observation matrix from equation (1) with βTxt set to zero.

Let y∗ = y∗1:n, so that y∗ is y with the time series component subtracted out. Conditional on γ

the joint posterior distribution for β and σ2ε is available from standard conjugacy formulas (e.g.

Gelman et al., 2002)

βγ |σε, γ,y∗ ∼ N
(
β̃γ , σ

2
ε (V

−1
γ )−1

)
1/σ2ε |γ,y∗ ∼ Ga

(
N

2
,
SSγ

2

)
(7)

where the sufficient statistics can be written

V −1
γ =

(
XTX

)
γ

+ Ω−1
γ β̃γ = (V −1

γ )−1(XT
γ y∗ + Ω−1

γ bγ)

N = ν + n SSγ = ss+ y∗Ty∗ + bTγ Ω−1
γ bγ − β̃Tγ V −1

γ β̃γ .
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The expression for SSγ can be written in several ways. The preceding form is computationally

convenient. Other equivalent representations emphasize its interpretation as a sum of squared

residuals that is obviously positive.

3.2.3 The marginal posterior of γ

Because of conjugacy, one can analytically marginalize over βγ and 1/σ2ε to obtain

γ|y∗ ∼ C(y∗)
|Ω−1
γ |

1
2

|V −1
γ |

1
2

p(γ)

SS
N
2
−1

γ

, (8)

where C(y∗) is a normalizing constant that depends on y∗ but not on γ. The MCMC algorithms

used to fit the model do not require C(y∗) to be computed explicitly. Equation (8) is inexpensive

to evaluate, because the only matrix that needs to be inverted is V −1
γ , which is of low dimension

if the models being investigated are sparse. Also notice that, unlike L1 based methods for sparse

modeling (e.g. the lasso), equation (8) places positive probability on coefficients being zero (as

opposed to probability density). Thus the sparsity in this model is a feature of the full posterior

distribution, and not simply the value at the mode.

4 Markov chain Monte Carlo

4.1 Parameter learning

Let θ denote the set of model parameters other than β and σ2ε . The posterior distribution of the

model described in Section 3 can be simulated by a straightforward Markov chain Monte Carlo

algorithm with the following steps.

1. Simulate the latent state α from p(α|y, θ, β, σ2ε ) using the simulation smoother from Durbin

and Koopman (2002).

2. Simulate θ ∼ p(θ|y,α, β, σ2ε ).

3. Simulate β and σ2ε from a Markov chain with stationary distribution p(β, σ2ε |y,α, θ).

Let φ = (θ, β, σ2ε ,α). Repeatedly cycling through the three steps given above yields a sequence

of draws φ(1), φ(2), . . . from a Markov chain with stationary distribution p(φ|y), the posterior distri-

bution of φ given y. The draw of θ in step 2 depends on which state components are present in the

model, but it is often trivial. For example, the model in equation (3) has three variance parameters,

all of which have conditionally independent inverse Gamma full conditional distributions (assuming

independent inverse Gamma priors).
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The draw in step 3 can be done using the stochastic search variable selection (SSVS) algorithm

from George and McCulloch (1997). SSVS is a Gibbs sampling algorithm in which each element of

γ is drawn from its full conditional distribution, proportional to equation (8). The full conditional

distributions are straightforward because each γk has only two possible values. After one sweep

through all the variables (which we do in random order), βγ and σ2ε are drawn from their closed

form full conditional distribution given in equation (7). Improvements to SSVS have been proposed

by several authors, notably Ghosh and Clyde (2011). However, the basic SSVS algorithm has

performed adequately for our needs.

4.2 Forecasting

As is typical in Bayesian data analysis, forecasts from our model are based on the posterior pre-

dictive distribution. It is trivial to simulate from the posterior predictive distribution given draws

of model parameters and state from their posterior distribution. Let ỹ denote the set of values to

be forecast. The posterior predictive distribution of ỹ is

p(ỹ|y) =

∫
p(ỹ|φ)p(φ|y) dφ. (9)

If φ(1), φ(2), . . . are a set of random draws from p(φ|y), then one samples from p(ỹ|y) by sampling

from p(ỹ(g)|φ(g)), which is done by simply iterating equations (1) and (2) forward from α
(g)
n , with

parameters θ(g), β(g), and σ
2(g)
ε . Because different elements of β will be zero in different Monte

Carlo draws, the draws from the posterior predictive distribution automatically account for sparsity

and model uncertainty, and thus benefit from Bayesian model averaging.

This method of forecasting produces a sample of draws from the posterior predictive distribution

p(ỹ|y). The draws can be summarized, for example by their mean (which is a Monte Carlo estimate

of E(ỹ|y)). Multivariate summaries, like sets of interesting quantiles, are also appropriate. Our

preference is to avoid summarizing the draws, instead reporting them using graphical methods such

as histograms, kernel density estimates, or the dynamic density plots used in Section 5.

One can forecast an arbitrary number of periods ahead. The examples presented below focus

on one-step-ahead forecasts because they are the most relevant to the nowcasting problem.

5 Examples

5.1 Weekly initial claims for unemployment

We used Google Correlate to produce the 100 search terms with values most correlated to the initial

claims data from Figure 1. We then ran the MCMC algorithm for 5000 iterations, and discarded

the first 1000 as burn in. The computation took about 105 seconds on a 3.4GHz Linux workstation

with ample memory. The software was coded in C++, with an R interface. We used the default
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priors in our software, except we set the “expected model size” to 5, which corresponds to setting

the prior inclusion probability to 5/100 = .05. The time series component of our model matched

equation (3), in that it included both a local linear trend component and an annual seasonal

component with S = 52 weeks. Initial claims for unemployment benefits for the previous week

are released on Thursdays, while Google Trends data is available with a two-day lag. This allows

us to estimate the previous week’s values 4-5 days before the data release. Initial claims data are

subsequently revised, and we use only the final numbers in this analysis.

Figure 3 shows the predictors to which the MCMC algorithm assigned posterior inclusion prob-

ability greater than .1. The posterior inclusion probability is a margin of equation (8), which cannot

be computed directly because the sum over model space is intractable. However, marginal inclusion

probabilities can be trivially estimated from the Monte Carlo sample by computing the proportion

of Monte Carlo draws with βk 6= 0. The three predictors with the highest posterior inclusion prob-

abilities were economically meaningful, and the difference in inclusion probabilities between the

other predictors is substantial. Of the 100 top predictors from Google Correlate, 14 were queries

for unemployment for a specific state. This model run settled on Idaho, but the other states are

all highly correlated with one another (correlations range between .67 and .92). Repeated runs

with different lengths and seeds confirmed that the model does prefer the information from Idaho

to that from other states, all of which are selected for inclusion much less often (the second most

predictive state was California, which only appeared in about 2% of the models). The sampling

algorithm did generate sparse models, with 67% of models having at most 3 predictors, and 98%

having at most 5.

Figures 4 and 5 show the posterior distribution of the latent state at each time point. Figure 4

plots the combined state (ZTt αt), representing the smoothed value of the series in the absence of

observation noise. Figure 5 shows the contribution of each component. Figures 4 and 5 represent

the posterior distribution using a dynamic distribution plot. The pointwise posterior median is

colored black, and each 1% quantile away from the median is shaded slightly lighter, until the 99th

and 1st percentiles are shaded white. Figure 5 is a visual representation of how much variation

in initial clams is being explained by the trend, seasonal and regression components. The trend

component shows a “double dip” in initial claims. Both the seasonal and the regression components

exhibit substantially more variation than the trend.

To better understand the value of the Google Trends data, we fit a pure time series model

equivalent to equation (3), but with no regression component. Figure 6 plots the cumulative

sum of the absolute values of the one-step-ahead prediction errors for the two models. The most

striking feature of the plot is the jump in cumulative absolute error that the pure time series model

experiences during the financial crisis of 2008-2009. The model that uses Google Trends data

generally accumulates errors at a slightly lower rate than the pure time series model, but the pure

time series model experiences large errors near the start of the recession. The model based on the
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Figure 4: Posterior state for the model based on initial claims data. The dots represent the raw observations.
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Figure 5: Contributions to state for the initial claims data.

Google Trends data continues accumulating error at a roughly constant rate. This is noteworthy

since it is widely recognized that the most challenging problem in forecasting economic time series

is predicting the “turning points.” The techniques described here may help with the turning-point

problem.

5.2 Monthly retail sales

A second example illustrates that our system is not completely automatic, and that it can be helpful

to select subsets or transformations of the data based on subject matter expertise. The bottom

panel of Figure 7 shows monthly seasonally-adjusted US retails sales, excluding food services. Retail

sales data for a particular month are released about two weeks after the month ends, while Google

Trends reports data with a two-day lag. Hence we can nowcast retail sales about 12 days ahead

of the data release. It would also be possible to fit a separate model conditional on data partway

through the month to give a longer forecasting lead. Like the initial claims data, and many other

economic time series, retail sales figures are typically revised after their first release. We use only

the final numbers in our analysis.

We paired the top 100 results from Google Correlate with the 600 Google Trends verticals. We

ran the model on the full data, and with two subsets of predictors. The first subset was the 100

series from Google Correlate, without using any of the Trends data. The second subset paired

the Correlate data with a subset of the Trends data that we subjectively determined to be of

potential economic relevance. Because this series has been seasonally adjusted, it makes sense to

seasonally adjust the predictors, which we did by passing each series through the STL procedure in

R (Cleveland et al., 1990), and subtracting off the estimated seasonal component. For each subset

we ran the model with and without deseasonalizing the predictors, and in all cases we removed
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Figure 6: The top panel shows cumulative absolute errors for equivalent time series models with and without
Google Trends data. The models are based on the initial claims data in the bottom panel.
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the seasonal component from model (3). We also ran a pure time series model (with no seasonal

or regression component) as a baseline. As in Section 5.1, we used the default values of all priors,

except we set the expected model size to 5.

The top panel of Figure 7 plots the cumulative absolute one-step-ahead prediction errors for

all seven models. It shows that the pure time series model has trouble adapting to the sudden

change points exhibited by the retail sales time series, but the models based on the full data (and

the economically relevant subset), accumulate error at roughly the same rate as before the financial

crisis. Figure 7 also makes clear that the Google Trends verticals provide additional explanatory

power over the variables produced by Google Correlate, but the subset of economically relevant

Trends verticals performs about as well as the entire data set. In terms of overall fit, all three

subsets performed slightly better with deseasonalized predictors.

The sets of predictors favored by the algorithm also tended to be more reasonable using desea-

sonalized data. Figure 8(a) plots the posterior marginal inclusion probabilities for the top variables

in the deseasonalized economic subset with posterior inclusion probabilities greater than .1. The

bars are shaded according to the probability that the coefficient is positive, so that white bars cor-

respond to positive coefficients, and black bars to negative coefficients. The top two predictors Real

Estate/Home Financing and Social Services/Welfare/Unemployment are the only ones present in

the model with greater than 50% probability, and both have a negative relationship to retail sales.

Note that there are 24 sub-verticals relating to specific brands of automobiles, and the probability

of including at least one automotive sub-vertical is around 61%, so the collection of automobile

brands can be construed as a third frequently-observed factor. The relative infrequency of each

individual automobile brand is because the MCMC algorithm is freely switching the brands that

it is choosing. The frequent switching is a desirable hedge against choosing the wrong brand, and

is a sign that the model averaging algorithm is performing well. Figure 8(b) plots the posterior

distribution of the number of predictors in the model. Despite having 184 variables to choose from,

the mean and median number of predictors (including the intercept) are both around 9, the 95th

percentile is 12, and the largest model in the MCMC sample has 18 predictors.

Figure 9 shows the posterior distribution of the trend and regression components of the model.

Both components show an adjustment during the recession, but the regression component captures

the sudden sharp change in the value of the series, which allows the local linear trend to remain

smooth. The regression effect is largely flat prior to the recession, with a sudden change near the

time of the financial crisis, followed by a gradual recovery.

The decomposition in Figure 9 helps explain the set of predictors favored by the model. Fig-

ure 10 compares the predictors with the largest marginal inclusion probabilities from Google Trends

and Google Correlate. By construction, the predictors from Google Correlate closely track the tar-

get series, but much of the information they provide is redundant once we consider the underlying

trend in retail sales. The predictors selected from Google Trends don’t match the series as a whole
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Figure 7: Cumulative absolute one-step-ahead forecast errors for the suite of models described in Section 5.2,
based on the retail sales data in the bottom panel.
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coefficients, and black to negative coefficients. Predictors starting with X. are Trends verticals. (b) Posterior
distribution of model size.

time

di
st

rib
ut

io
n

2004 2006 2008 2010 2012

−
6

−
2

0
2

4
6

trend

time

di
st

rib
ut

io
n

2004 2006 2008 2010 2012

−
6

−
2

0
2

4
6

regression

Figure 9: Components of state for the retail sales data.
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Figure 10: Retails sales and the predictors with the highest marginal inclusion probabilities from (a) the
economically relevant subset of Google Trends verticals, and (b) Google Correlate.

nearly as well, but they do exhibit violent shocks near the same time points as the target series.

6 Conclusion

We have presented a system useful for nowcasting economic time series based on Google Trends and

Google Correlate data. The system combines structural time series models with Bayesian spike-

and-slab regression to average over a subset of the available predictors. The model averaging that

automatically comes with spike-and-slab priors and Markov chain Monte Carlo helps hedge against

selecting the “wrong” set of predictors. The spike-and-slab prior helps protect against spurious

regressors, but no such protection can be perfect. For example, one of the strongest predictors

in the full data set for retail sales application was the Science/Scientific Equipment vertical. The

vertical exhibited a spike near the beginning of the financial crisis, attributable to a series of news

stories about the Large Hadron Collider that went online at that time, and its potential for creating

black holes that could destroy the earth. This is a spurious predictor in that it would be unlikely

to exhibit similar behavior in periods of future economic distress. Some amount of subjective

judgment is needed to remove such egregious anomalies from the training data, and restrict the

candidate variables to those that have at least a plausible economic justification.

One open question that we plan to investigate further is whether and how the predictor vari-

ables should be adjusted, either prior to entering the candidate pool, or as part of the MCMC.

It is common to “whiten” predictors by removing a seasonal pattern, and possibly a trend, but
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which seasonal pattern and which trend (its own, or that of the response), is a matter for further

investigation.
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