Bayesian Variable Selection for Nowcasting Economic Time Series

Steve Scott
Hal Varian

December 31, 2012
Problem motivation

- Want to use Google Trends data to nowcast economic series
 - unemployment may be predicted by “job search” queries
 - auto purchases may be predicted by “vehicle shopping” queries
- Fat regression problem: there are many more predictors than observations
- Millions of queries, hundreds of categories
 - number of observations ~ 100 for monthly economic data
 - number of predictors ~ 150 for “economic” categories in I4S
- How do we choose which variables to include?
Example: unemployment

- Sometimes Google Correlate works
- Load in: initial claims for unemployment benefits
- Get back 100 queries, including “sign up for unemployment”
Build a simple AR model

- Use deseasonalized initial claims \((y_t)\)
- Use deasonalized, detrended searches for “unemployment office” \((x_t)\)

\[
\begin{align*}
\text{base: } y_t &= a_0 + a_1 y_{t-1} + e_t \\
\text{regr: } y_t &= a_0 + a_1 y_{t-1} + bx_t + e_t
\end{align*}
\]

- Estimate using rolling window
- One-step-ahead MAE during recession is about 8.7% lower when “unemployment office” query is included
But sometimes simple correlation doesn’t work

User uploaded activity for **US Auto Sales NSA** and United States Web Search activity for **indian restaurants**

\(r = 0.7195 \)

Hint: Drag to Zoom, and then correlate over that time only.
Avoid spurious regression

- How to control for trend and seasonality?
 - Build a model for the *predictable* part of time series (“whiten the series”)
 - Find regressors that predict the residuals

- How to choose regressors?
 - Simple correlation is too limited
 - Human judgment doesn’t scale
Approaches to variable selection

- Human judgment
- Significance testing (forward and backward stepwise regression)
- Information criteria (AIC, BIC)
- Principle component, partial least squares and factor models
- Lasso, ridge regression, penalized regression models
Our approach

▶ Original approach (simple autoregression)
 ▶ forecast y_t using its own past values and human-chosen contemporaneous regressors from Google Trends
 ▶ non-seasonal AR1: $y_t = a_1 y_{t-1} + b x_t + e_t$
 ▶ seasonal AR1: $y_t = a_1 y_{t-1} + a_{12} y_{t-12} + b x_t + e_t$

▶ Current approach (Bayesian Structural Time Series)
 ▶ Use Kalman filter to whiten time series
 ▶ Spike and slab regression for variable selection
 ▶ Bayesian model averaging for final forecast
Basic structural model with regression

- Classic time series model with constant level, linear time trend, and regressors

 \[y_t = \mu + bt + \beta x_t + e_t \]

- “Local linear trend” is a stochastic generalization of this

 Observation: \(y_t = \mu_t + z_t + e_{1t} \)

 State 1: \(\mu_t = \mu_{t-1} + b_{t-1} + e_{2t} \)

 State 2: \(b_t = b_{t-1} + e_{3t} \)

 State 3: \(z_t = \beta x_t \)

- Parameters to estimate: regression coefficients \(\beta \) and variances of \((e_{it}) \) for \(i = 1, \ldots, 2 \)

- Use these variances to construct optimal Kalman forecast:
 \[\hat{y}_t = y_{t-1} + \beta x_t + k_t(\text{variances}) \times \text{forecast error at } t-1 \]
Consider simple case without regressors and trend

- Observation equation: $y_t = \mu_t + e_{1t}$
- State equation: $\mu_t = \mu_{t-1} + e_{2t}$

Two extreme cases

- $e_{2t} = 0$ is constant mean model where best estimate is sample average up to t
- $e_{1t} = 0$ is random walk where best estimate is current value

In general, optimal forecast will be weighted average of past observations and current observation

Weights depend on variances of the two error terms
Advantages of Kalman

- No problem with unit roots or other kinds of nonstationarity
- No problem with missing observations
- No problem with mixed frequency
- No differencing or identification stage (easy to automate)
- Nice Bayesian interpretation
- Easy to compute estimates (particularly in Bayesian case)
- Nice interpretation of structural components
- Easy to add seasonality
- Good forecast performance
Spike and slab regression for variable choice

- **Spike**
 - Define vector γ that indicates variable inclusion
 - $\gamma_i = 1$ if variable i has non-zero coefficient in regression, 0 otherwise
 - Binomial prior distribution, $p(\gamma)$, for γ
 - Can use an informative prior; e.g., expected number of predictors

- **Slab**
 - Conditional on being in regression ($\gamma_i = 1$) put a (diffuse) prior on β_i, $p(\beta|\gamma)$.
 - Estimate posterior distribution of (γ, β) using MCMC
We simulate draws from posterior using MCMC
Each draw has a set of variables in the regression (γ) and a set of regression coefficients (β)
Make a forecast of y_t using these coefficients
This gives the posterior forecast distribution
Can take average over all the forecasts for final prediction
Can take average over draws of γ to see which predictors have high probability of being in regression
Example 1: Consumer Sentiment

- Monthly UM Consumer sentiment from Jan 2004 to Apr 2012 ($n = 100$)
- Google Insights for Search categories related to economics ($k = 150$)
- No compelling intuition about what predictors should be
Variable selection

- Google Insights for Search categories related to economics ($k = 150$)
- Deseasonalize predictors using R command `stl`
- Detrend predictors using simple linear regression
- Let `bsts` choose predictors
- Financial planning: schwab, 401k, ira, smith barney, fidelity, roth ira
- Investing: stock, gold, fidelity, stocks, silver, stock market, gold price, scottrade
Posterior distribution of one-step ahead forecast
Start with Kalman trend
2. add Financial.Planning (mae=4.9965)
3. add Investing (mae=3.8372)
Bayesian Variable Selection for Nowcasting Economic Time Series

4. add Business.News (mae=3.2226)
Bayesian Variable Selection for Nowcasting Economic Time Series
6. add Energy. Utilities (mae=3.0068)
Fun with priors

- Can use prior to influence variable choice in regression
 - Give higher weight to certain verticals
 - Influence the expected number of variables in regression
- Can use prior to improve estimate of trend component
 - Google data starts in 2004, only one recession
 - Can estimate parameters of trend model with no regressors
 - Use this as prior for estimate of trend in estimation period
Example of informative prior for trends

- UM Consumer Sentiment starting Jan 1996
- Google data starting Jan 2004
- Estimate variances for Kalman filter using data up to Jan 2004
- Use these parameters as informative prior for subsequent data
- Tends to give more weight to regressors
Example 2: gun sales

Use FBI’s National Instant Criminal Background Check
Google Correlate Results

- `[stack on]` has highest correlation
- `[gun shops]` is chosen by bsts
Trend

1. trend (mae=0.49947)
2. add seasonal (mae=0.33654)
3. add gun.shops (mae=0.15333)
Google Trends predictors

- 586 Google Trends verticals, deseasonalized and detrended
- 107 monthly observations

<table>
<thead>
<tr>
<th>Category</th>
<th>mean</th>
<th>inc.prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recreation::Outdoors::Hunting:and:Shooting</td>
<td>1,056,208</td>
<td>0.97</td>
</tr>
<tr>
<td>Travel::Adventure:Travel</td>
<td>-84,467</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Table: Google Trends predictors for NICS checks.
1. trend (mae=130270)
2. add seasonal (mae=61094)
3. add recreation_shooting (mae=43128)
State decomposition
Future work

- Seasonality — done
- Mixed frequency forecasting — done
- Panel data
- Fat tail distributions – almost done
- Parallel MCMC – underway
- Automate the whole thing – underway