Outline

• Waves of innovation
 - Combinatorial innovation
 - What are implications for commerce?

• Computer mediated transactions
 - There is now a computer between most buyers and sellers
 - What are the implications for business?

• Collaborative computing
 - There is now a computer in most offices
 - What are the implications for work?
Waves of innovation

- Huge innovation on web in the last 15 years
 - Web pages, search engines, wikis, docs, maps ...
 - Why has there been so much innovation?
 - Why has it been so rapid?
- Examples of combinatorial innovation
 - Set of component technologies that can be combined and recombined to create new innovations
 - 1800: Interchangeable parts
 - 1900: Gasoline engine
 - 1960: Integrated circuits
 - 1995-now: Internet
 - Shumpeter (1935), Usher (1929), Weitzman (1998), and others...
 - Often process takes years, or decades to play itself out, but this time it was very rapid
But this time…

- Component parts are all bits!
 - Protocols: TCP/IP, HTTP, CGI, Flash …
 - Languages: HTML, XML, Java, JavaScript ...
 - Software: LAMP (Linux, Apache, MySQL, Python)...
- Bits/protocols/languages can be combined to make…
 - Web pages, wikis, auctions, exchanges, video streaming, VOIP, search engines…
 - No time-to-manufacture, no inventory problems, no delivery problems
 - Bits can be shipped around the world in seconds, and innovators can work in parallel exploring combinations
- Result: extremely rapid evolution and technological progress
- Question: what are implications for commerce?
Computer mediated transactions

- A computer is now involved in almost every economic transaction
 - Even cash registers are just PCs with a special interface
 - B2B and web-based transactions are even more powerful due to direct connection to a database
 - Original intent of computer mediation was just accounting
 - But the record of transactions has other uses
 - How does the availability of computer-mediated transactions affect economic activity?
What are implications?

- What do computer mediated transactions enable?
 - Better contracts
 - Data extraction and analysis
 - Controlled experimentation
 - Personalization and customization
Better contracts

- Contracts are fundamental to commerce
 - Simplest form: “I will do X if you will do Y”
 - Exchange of goods, services, labor, ...
 - Major problem: monitoring the contract
 - Sometimes performance can be directly observed
 - But often the quality of goods, service, actions, effort may not be observed
 - Large literature in contract theory and mechanism design
- Where do computers come in?
 - Make more things observable and hence contractable
 - Historically, advances in “information technology” have often enabled better measurement and monitoring
 - Computers move this capability to a new level
Computer as accountant

• Since the computer serves as intermediary it can not only serve as an accountant but also be used to verify contractual performance
• Allows us to structure more elaborate contracts and potentially improve economic efficiency

Francesco di Marco Datini
Computer as monitor

- Since the computer serves as intermediary it can not only serve as an accountant but also be used to verify contractual performance.
- Allows us to structure more elaborate contracts and potentially improve economic efficiency.

Francesco di Marco Datini
Computer as verifier

- Since the computer serves as intermediary it can not only serve as an accountant but also be used to verify contractual performance.
- Allows us to structure more elaborate contracts and potentially improve economic efficiency.
- Accounting + computers = better monitoring = potentially better contracts.

Francesco di Marco Datini
Rental cars

• Assume...
 – Insurance for rental cars would cost less if renters drove more slowly
 – Drivers would be willing to drive more slowly if they paid less for rental car
 – But contract can not be made since driving speed can't be observed

• But now...
 – Contract is feasible due to vehicle monitoring technology
 – Everyone is made better off (in this model)
Historical examples

- Mediterranean shipping 3300 BC
- Cash registers 1883
- Semi trucks 1980s
- Video stores 1990s
- Online advertising 2000s
Mediterranean shipping 3300 BC

• How do you ensure that your full shipment is received at other end of voyage...with no written language?

• Answer
 - Match clay tokens (*bullae*) to jars of oil loaded on ship
 - Seal tokens in clay envelope, stamp clay with seal
 - Bake in kiln, send with shipment
 - At other end of journey, recipient breaks open the envelope and compares tokens to jars on ship
 - Later, inscribe marks on bullae as record of what is inside, which may have led to writing
Examples of bullae 3300 BC
How do you ensure employees don't steal?

- From cash register
 - Answer: put a bell on it
 - 1883 patent to James Ritty and John Birch for the “Incorruptible Cashier”
 - Paper tape + bell recorded transactions

- From truck
 - Put a “vehicular monitoring system” on it
 - Improves gas mileage, logistics, and honesty!
 - Hubbard (2000)
Video store rentals

- Originally store purchased video tapes from studio, rented to customers
 - But price was high, so store only bought a few
 - Much unhappiness among all parties
- Revenue sharing model
 - Distributor gives videos to store at nominal price
 - Each time one is rented, revenue is shared according to pre-specified formula
 - Dana and Spier (2001), Mortimer (2008),
- But need verifiable way to count the transactions
 - Use bar codes, computers, and network
 - Each party to the transaction can verify correctness on a daily basis
Align incentives in online advertising

• Publisher has space for ad impression on page, wants to sell it to the highest bidder
• Advertiser doesn't care about ad impressions, wants clicks = visitors and sales

• Answer
 – Value per impression = value per click x clicks per impression = VPC x CTR
 – CTR is the “exchange rate” you can use to convert one to the other. How to estimate?
 – Huge statistical/machine learning problem
 – Aligns incentives between publisher, advertiser and user

• Revenue sharing
 – Publisher and ad provider can share revenue from click
Example

Advertiser
- Joe's Jets and Moe's Models both want keyword “jet airplane” but there is space for only one ad
- Joe is willing to pay a lot per click since he makes high profit selling jets
- But Moe gets a lot more clicks than Joe because more people buy models than real jets

Publisher
- What publisher cares about is expected revenue = price per click \(\times \) expected number of clicks

Ad network
- Tries to estimate expected number of clicks, which (typically) allows it to make a better choice of which ad to show
- So all major search engines estimate CTRs for ad ranking, allowing publishers to sell impressions and advertisers to buy clicks
Computer mediated transactions make advertising accountable

- A purchase can be linked back to a click or an impression, making advertising accountable
 - ...at least on a statistical basis
 - Allows for optimization and tuning of purchase process

- Examples
 - Search advertising
 - Contextual advertising
 - Display advertising
 - Mobile advertising
 - TV, radio, print more difficult due to lack of feedback
Data extraction and analysis

• Since online transactions are computer mediated, can study data for patterns
 – Which converts better [diamond] or [diamonds]?
 – How do clicks vary over time of day?
 – What keywords perform best?
 – What advertiser characteristics predict success?
• Build predictive and causal models
 – Formulate hypotheses
 – Build models and estimate parameters
• But you don't stop there...
Controlled experimentation

- Data from computer mediated transactions allows for measurement
 - But it takes controlled experimentation to determine causality
 - Online applications allow for controlled experiments and continuous improvement
 - “Process kaizen” in 1980s now becomes “product kaizen”
 - 6,000 experiments in 2009, 500 improvements on search alone
 - Data vs HiPPO
Customization and personalization

- Computer mediated transactions allow for “mass customization” whereby transactions can be optimized for individuals
- Purchases, searches, social interaction, etc.
- Most web ads are dynamically assigned

- Challenges
 - Benefits of personalization v privacy considerations
 - However interests are not diametrically opposed
 - Intended use: provide better services to users
 - Unintended use: fraud, extortion, embarrassment
 - Better security, information, transparency, user control can go a long way in aligning interests
But advertising is just the beginning...

- Computer mediated transactions make advertising accountable
- But computer mediated transactions also allow for other kinds of optimization
 - Logistics and transportation optimization
 - Customer feedback and interaction
 - Product design and evolution
 - Recommender systems
- Improves business processes across the board
- What are implications for worker-to-worker transactions?
“The computer and the dynamo”

- Paul David (1990) on the productivity of electricity
 - In early 1800s waterwheels powered plants
 - All machinery connected to central shaft
 - Clustered machinery by type as in model
Improvements in power

- Steam and then electric motors used same design
- Miniaturization of electric motor made it possible to power each machine separately
- Allowed for rearrangement of production...but no one did it. "We've always done it this way."
- Henry Ford and the assembly line offered the breakthrough
- Allowed for dramatic increases in productivity
Henry Ford and mass production

- Ford realized that he could rearrange production and assembly so as to optimize production
- Put the machines where they were needed, not where they “had always been”
Knowledge workflow

• Assembly of mechanical parts
 - Assembly lines: optimize the flow of physical product through factory in 1909

• Assembly of ideas
 - Collaborative computing: optimize the flow of ideas through the organization in 2009
 • Separation, distribution and optimization of tasks
 • Multiauthored documents to facilitate collaboration
 • Version tracking and control
 • Overcome barriers of distance
 - Outsourcing specialized tasks (McKinsey)
 - Adam Smith's pin factory for knowledge work
 - ...and on a global scale
Enabled by “cloud computing”

- Evolution of computing
 - Mainframe
 - Data was in one place but access was controlled
 - Networked workstation
 - Data in work group, direct access
 - Personal computer
 - Direct access, data mostly on single computer or LAN
 - Network computing
 - Data on network, direct access but mostly for download
 - Cloud computing
 - Direct access, data lives in cloud
 - Store once, read everywhere, write anywhere via the Web
 - Access from any device, at any time, by any authorized user
Infrastructure for rent

- Barriers to entry for online businesses have been dramatically reduced
 - Can purchase computation in data center, storage on demand, development environment and database services from cloud computing providers
 - Turns fixed cost into variable cost
 - Allows you to smoothly scale your business to meet customer growth
 - Pushes “combinatorial innovation” to a new level
 - Not only innovation is combinatorial, but now actual deployment!
 - Can foster a huge burst of creative activity
Micromultinationals

• Cheap communications
 – SMEs now have access to communications technology that only the mega-multinationals could afford a decade ago
 – Email, webpages, wikis, VOIP, wireless, collaborative computing, cloud computing
 – Opens doors to small business around the world

• Combinatorial innovation
 – Businesses can be born international
 – Fosters huge parallel innovation in both technology and commerce
 – This is only the beginning...
The End
Appendix

• Various unused slides below
Early attempt to optimize knowledge work with hypertext...
Disassembly line