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= Abstract

| analyze the Google Ad words auction using game theory. Given a set

of advertisers and their click-values, | can solve for an equilibrium

set of bids. | can also invert this calculation: given a set of bids, | can find the set of click-values that are consistent with those
bids, if such a set exists. The Nash equilibrium model fits the data very well, and yields plausible click-valuations, suggesting
that the model does agood job of explaining the data.
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Simplified auction rules

1) Advertiser i hasvaluefor click v;, fori=1, ..., n.

2) Advertiser i announcesbid by, i=1, ..., n.

3) Highest bidder gets position 1, second highest position 2, and so on.

4) Bidder in position i pays price-per-click determined by bid of advertiser
below him, so p; = bj, 1.

5) Payoff to bidder i isthen (v; — bj,1) X, where x; isthe CTR for position i.

(The real auction orders advertiser by ad quality x bids. This adds a few constants as described below, but the basic strategic
anaysisissimpler if we set ad quality = 1.)
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Example

psn val ue ctr brd profit

1 Vi Xg p1 (b2 F V) xg
2 Vo Xo  pp (B3 HV5) X,
3 V3 X3 p3 (P4 Fvg) X5
4 Vg 0 ba 0

Note that if bidder 3 wanted to move up to position 2, he would have to bid b, + e, while if 2 wanted to move to position 3 he
would haveto bid by + e.

To move up you have to beat the bid a bidder is making, to move down you have to beat the price a bidder is paying.
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Nash equilibrium

A set of bids (by) isaNash equilibrium if bidder i makes at least as much profit by being in position i than in any other position j,
assuming the other bidders don't change their behavior. That is:

(Vi = b)) X = (Vi - bJ) Xj fOI’j <i (NE].)
(Vi = biz) % = (Vi —bj1) X forj > i (NE2)



google-auction-preso-nz.nb |5

Manipulate Nash inequalities

Can rearrange to:
vi(X = Xj) + by X; > bigx forj <i (NE2a)
Vi(x = Xj) + b X = by forj > i. (NE2b)

Any set of (by) that satisfy these linear inequalities is an equilibrium. Ususally, there will be an entire range of such solutions.

Can use linear programming to solve for the Nash equilibrium set of bids that yield the maximum or minimum revenue to search
engine.

maxy, > bi 1 % such that NElaand NE2a are satisfied
min, >.bi.1 % suchthat NElaand NE2a are satisfied

But thereis an easier way to find an interesting subset of the NE.
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Symmetric Nash equilibrium

Suppose we find a set of (by;) that satisfies the symmetric Nash inequalities
b1> b2>...>bn (SNEl)
Vi(X — ;) + b1 X = bgx foraliandj. (SNE2)

(These arejust the j > i inequalities we saw before, but now written for al i and j.)
Then we must also satisfy (NEla-b) since:
Vi(%i = X)) + by Xj = Vi(X — Xj) + b1 X =bigx for j<i.

Hence, the set of b; s that solve (SNE1-2) are a subset of the set of b; s that satisfy (NE1-2). It turns out to be a very nicely
behaved subset closely related to the classical assignment problem.
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One-step inequalities
Writing these inequalitiesfor j=i+ 1and j =i — 1 we have:
Viei(Xi-1 = %) + bisa X = b X1 = Vi(Xica — %) + biia X

We can show that if you satisfy the one-step inequalities you satisfy them all. The above inequalities give us a nice recursion to
solve for aNash equilibrium. The smallest and largest (by) that solve (SNE1-2) are therefore the solutions to these recursions:

bi Xi-1= b X+ VilXi—1 — %) (RNE1)
bi Xi—1 = biya X + Vica(Xi—1 — %). (RNE2)

RNEL1 is the same as the no-envy equilibrium of Edelman, Ostrovsky, and Schwartz: "Internet Advertising and the Generalized
Second Price Auction", NBER Working Paper, 2005.
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Bidding functions
Take the lower bound:

BiXi—1= DX+ Vi(Xi-1—X) (RNEI)
Dividethrough by x;_1. Letting g = X;/X_1 we have:

bi = bisia + vi(l-&) (RNED)

So the equilibrium bid of agent i is aconvex combination of his value and the bid of the agent below him. First excluded bidder
bids histrue value. Can solve the recursion by repeated substitution to get explicit solution:

b1 X = Xjsi Vi(Xj-1 — X))
Total revenue = Vo (X1 — X2) + 2V3(Xo — X3) + 3V4 (X3 — Xg) ...
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From bids to values

We have seen that a symmetric Nash equilibrium satisfies these inequalities:
bi X1 = Vi(Xi-1— %) + by X
DX =< Vi(X — Xiy1) + Dip2 X1

Rearranging gives:

bi Xi—1— b1 X - D1 Xi— D2 Xit1
Xi-1— X Xi—Xi+1
Bounds can be interpreted as:

b %_1—bi,1 X _ changein costs
X_1—%  changeinclicks

= incremental cost per click

This gives intuitive interpretation of bounds. move up till the incremental cost per click exceeds your value per click.
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Interpretation of SNE conditions

SNE inequalities say that in equilibrium the incremental cost per click must increase with the click-through-rate. ~ Why?
Consider the first time it decreased. At this point bidder bought expensive clicks and then refused to buy cheaper incremental

clicks. That cannot be an equilibrium.

b Xig -biaXi
Xi-1 = Xi Supply curve of clicks

—
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Geometry of conditions

Plot the expenditure profile b, 1 X = pj % versus x.. The slopesof the line segments emanating from each point are the incremen-
tal costs per click. The slope of the supporting lines at each vertex are the possible click-values associated with that bidder.

Pi Xi flowers

Xi
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Maximizing profit

Profit for advertiseriis. 7j = vi i — p; X. Thisisastraight linein (x;, p; %) space with vertical intercept equal to the negative of
profit. So maximizing profit means shifting this isoprofit line as far down as possible:

Pi Xi flowers

Xi
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Range of values =range of slopes
Furthermore, the range of click-values for which agiven position is optimal is given by the slope of the supporting line:

Pi Xi f1owers

Xj
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Quality adjustment

We view the actual CTR, z, to be the product of the position-specific effect, x;, and a quality effect g, sothat z = g . If an
advertiser changes position, the advertiser-specific effect (g) goes with him. We order the bidders by g b; and the "bid dis-

counter” sets the price that i pays to be just enough to retain his position. That is, pje = bj;1 €41, Or pj = bi;1€6.1/6. Nash
equilibrium then entails the inequalities:

Vi — buiesi/e)ex = (vi— bje/e)ax,  forj <i
(Vi — buresi/e)ex = (Vi—bjieii/e)ex forj >

As before, we aso have a symmetric version of the inequalities

(@Vi— bi18:1)% = (8Vi—bjie1)x forali and .
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Empirical implications

If the data come from a Nash equilibrium, then we must satisfy

bi & Xi—1— b1 6.1 X oy = Dii1 €41 X— Diso €12 Xis1
Xi—1— X Xi — Xi+1

Furthermore, if these intervals are non-empty, we can aways find aset of (v;) that are consistent with the observed bids.

So a necessary and "sufficient” test for Nash equilibrium isto see whether the incremental cost per click isincreasing in the CTR.
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Perturbing the data

If the data don't already satisfy the SNE inequalities, we can ask for the minimal perturbation (in terms of sum-of-squared
residuals) that does satisfy the inequalities. Thisisaquadratic programming problem.

Pi Xi debt consolidation

Pi Xi dial up internet provider

Xi
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Other cases

Pi Xi fantasy football

Xij

Pi Xi new york city business

Xi
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Quantifying the fit

| looked at 2425 randomly chosen keyword auctions and found that the average absolute deviation reguired to satisfy the inequali-
ties was about 5.8% (median 4.8%). It was ailmost always less than 10%.

Mean Abs Error
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Bounds on values

Can use the fitted convex function to estimate the click-values.
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Bounds on values, cont.

rawLB r awB qpLB qpuB price

1 0.6 S 0.78 o 0. 56
2 0.53 0. 47 0.59 0.6 0.43
3 1.39 0.91 0.99 1.01 0. 68
4 0.92 1.42 0.94 1.01 0.55
5 0.77 1.24 1.14 1.26 0. 66
6 0.5 0.5 0.73 0.74 0.41
7 1.39 0. 37 0.53 0.54 0.3

8 0. 05 1.35 0. 05 0.51 0.23
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Bounds on values, cont.
1) Nash equilibrium describes the data well.
2) Values are usually reasonable, often roughly twice the bids.

3) Position RHS1 often has a high value, possibly due to promotion policy (which isn't modeled here), or to preference for first
position, or for impression value.

4) If the expenditure profile isflat, the clicks values are about the same. If it ishighly convex, the values are quite different.
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Incentives
The Google auction does not result in truthful bidding. What about V CG auction which has truthful revelation?

Each advertiser reports his value-per-click, r;. Google assigns advertisers to positions to maximize value of page. Payment of
advertiser i = value accruing to other advertisersif i is present — value accruing to other advertisersif i is absent.

If i isabsent, each advertiser below him shiftsup by 1 dot, soi's payment is.
payment by i = Zpi ri(Xj-1 — ;)

Note that when r; = v; thisis the same as the lower bound on the SNE! This is true more generally; see Demange and Gale
(1985) and Roth and Sotomayor (1990).



