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� Abstract

I analyze the Google Ad words auction using game theory.  Given a set
of advertisers and their click-values,  I can solve for an equilibrium
set of bids.  I can also invert this calculation: given a set of bids, I can find the set of click-values  that are consistent with those
bids, if such a set exists. The Nash equilibrium model fits the data very well, and yields plausible click-valuations,  suggesting
that the model does a good job of explaining the data.



Simplified auction rules

1) Advertiser i has value for click vi,  for i = 1, ..., n.

2) Advertiser i announces bid bi, i = 1, ..., n.

3) Highest bidder gets position 1, second highest position 2, and so on.  

4) Bidder in position i pays price-per-click  determined by bid of advertiser 

     below him, so  pi = bi+1.

5) Payoff to bidder i is then Hvi - bi+1L xi, where xi is the CTR for position i.

(The real auction orders advertiser by ad quality � bids.  This adds a few constants as described below, but the basic strategic
analysis is simpler if we set ad quality = 1.)
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Example

   psn   value   ctr   bid   profit
         v       x           (-b2 + v ) x
   1      1       1    b1            1   1
         v       x           (-b3 + v ) x
   2      2       2    b2            2   2
         v       x           (-b4 + v ) x
   3      3       3    b3            3   3
         v
   4      4      0     b4    0

Note that if bidder 3 wanted to move up to position 2, he would have to bid b2 + e, while if 2 wanted to move to position 3 he
would have to bid b4 + e.  

To move up you have to beat the bid a bidder is making, to move down you have to beat the price a bidder is paying.
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Nash equilibrium

A set of bids HbiL is a Nash equilibrium if bidder i makes at least as much profit by being in position i than in any other position j,
assuming the other bidders don't  change their behavior.   That is:

          Hvi - bi+1L xi ³ Ivi - b jM x j for j < i                                              (NE1)

          Hvi - bi+1L xi ³ Ivi - b j+1M x j for j > i                                              (NE2) 

4   google-auction-preso-nz.nb



Manipulate Nash inequalities

Can rearrange to:

          viIxi - x jM + b j x j ³ bi+1 xi  for j < i                                          (NE2a)

          viIxi - x jM + b j+1 x j ³ bi+1 xi for j > i.                                         (NE2b)    

Any set of  HbiL that satisfy these linear inequalities is an equilibrium.  Ususally, there will be an entire range of such solutions.
Can use linear programming to solve for the Nash equilibrium set of bids that yield the maximum or minimum revenue to search
engine.  

  maxb Úbi+1 xi  such that NE1a and NE2a are satisfied

  minb Úbi+1 xi  such that NE1a and NE2a are satisfied

But there is an easier way to find an interesting subset of the NE.
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Symmetric Nash equilibrium

Suppose we find a set of HbiL that satisfies the symmetric Nash inequalities 

         b1 > b2 > ... > bn                                                                  (SNE1)

          viIxi - x jM + b j+1 x j ³ bi+1 xi for all i and j.                 (SNE2)

          
(These are just the j > i inequalities we saw before, but now written for all i and j.)

Then we must also satisfy (NE1a-b)  since:

viIxi - x jM + b j x j ³ viIxi - x jM + b j+1 x j ³ bi+1 xi  for j < i.

Hence, the set of bi s that solve (SNE1-2)  are a subset of the set of bi s that satisfy (NE1-2).   It turns out to be a very nicely
behaved subset closely related to the classical assignment problem.
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One-step  inequalities

Writing these inequalities for j = i + 1 and j = i - 1 we have:

vi-1Hxi-1 - xiL + bi+1 xi ³ bi xi-1 ³ viHxi-1 - xiL + bi+1 xi

We can show that if you satisfy the one-step  inequalities you satisfy them all.  The above inequalities give us a nice recursion to
solve for a Nash equilibrium.  The smallest and largest HbiL that solve (SNE1-2)  are therefore the solutions to these recursions:

            bi xi-1 = bi+1 xi + viHxi-1 - xiL HRNE1L
bi xi-1 = bi+1 xi + vi-1Hxi-1 - xiL. HRNE2L

RNE1 is the same as the no-envy  equilibrium of Edelman, Ostrovsky, and Schwartz: "Internet Advertising and the Generalized
Second Price Auction", NBER Working Paper, 2005.
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Bidding functions

Take the lower bound: 

            bi xi-1 = bi+1 xi + viHxi-1 - xiL HRNE1L

Divide through by xi-1.  Letting ai = xi � xi-1 we have:

            bi = bi+1 ai + viH1 - aiL HRNE1L

So the equilibrium bid of agent i is a convex combination of his value and the bid of the agent below him.   First excluded bidder
bids his true value.  Can solve the recursion by repeated substitution to get explicit solution:

             bi+1 xi = Új>i v jIx j-1 - x jM

Total revenue  = v2 Hx1 - x2L + 2 v3 Hx2 - x3L + 3 v4 Hx3 - x4L ...
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From bids to values

We have seen that a symmetric Nash equilibrium satisfies these inequalities:
               bi xi-1 ³ viHxi-1 - xiL + bi+1 xi

               bi+1 xi £ viHxi - xi+1L + bi+2 xi+1

Rearranging gives:

 
bi xi-1- bi+1 xi

xi-1- xi
³ vi ³  

bi+1 xi- bi+2 xi+1

xi-xi+1

Bounds can be interpreted as:

         
bi xi-1- bi+1 xi

xi-1- xi
= change in costs

change in clicks
= incremental cost per click

This gives intuitive interpretation of bounds: move up till the incremental cost per click exceeds your value per click.
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Interpretation of SNE conditions

SNE inequalities say that in equilibrium the incremental cost per click must increase with the click-through-rate.    Why?
Consider the first time it decreased.  At this point bidder bought expensive clicks and then refused to buy cheaper incremental
clicks.  That cannot be an equilibrium.

ctr

bi  xi-1 - bi+1  xi�����������������������������������������
xi-1 - xi Supply curve of clicks
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Geometry of conditions

Plot the expenditure profile bi+1 xi = pi xi versus xi.   The slopes of  the line segments emanating from each point are the incremen-
tal costs per click.   The slope of the supporting lines at each vertex are the possible click-values  associated with that bidder.

xi

pixi flowers
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Maximizing profit

Profit for advertiser i is: Πi = vi xi - pi xi.  This is a straight line in Hxi, pi xiL space with vertical intercept equal to  the negative of
profit.  So maximizing profit means shifting this isoprofit line as far down as possible:

xi

pixi flowers
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Range of values = range of slopes

Furthermore, the range of click-values  for which a given position is optimal is given by the slope of the supporting line:

xi

pixi flowers
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Quality adjustment

We view the actual CTR, zi, to be the product of the position-specific  effect, xi, and a quality effect ei, so that zi = ei xi.  If an

advertiser changes position, the advertiser-specific  effect (ei) goes with him.  We order the bidders by ei bi  and the "bid dis-

counter" sets the price that i pays to be just enough to retain his position.  That is, pi ei = bi+1 ei+1, or pi = bi+1 ei+1 �ei.   Nash
equilibrium then entails the inequalities:

Hvi - bi+1 ei+1 �eiL ei xi ³ Ivi - b j e j �eiM ei x j for j < i

Hvi - bi+1 ei+1 �eiL ei xi ³ Ivi - b j+1 e j+1 �eiM ei x j for j > i                              

As before, we also have a symmetric version of the inequalities

Hei vi - bi+1 ei+1L xi ³ Iei vi - b j+1 e j+1M x j for all i  and j.    
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Empirical implications

If the data come from a Nash equilibrium, then we must satisfy

 
bi ei xi-1- bi+1 ei+1 xi

xi-1- xi
³ ei vi ³   

bi+1 ei+1 xi- bi+2 ei+2 xi+1

xi - xi+1

Furthermore, if these intervals are non-empty,  we can always find a set of HviL that are consistent with the observed bids.

So a necessary and "sufficient" test for Nash equilibrium is to see whether the incremental cost per click is increasing in the CTR.  
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Perturbing the data

If the data don't  already satisfy the SNE inequalities, we can ask for the minimal perturbation (in terms of sum-of-squared
residuals) that does satisfy the inequalities.  This is a quadratic programming problem.

xi

pixi debt consolidation

xi

pixi dial up internet provider
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Other cases

xi

pixi fantasy football

xi

pixi new york city business
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Quantifying the fit

I looked at 2425 randomly chosen keyword auctions and found that the average absolute deviation required to satisfy the inequali-
ties was about 5.8% (median 4.8%).  It was almost always less than 10%.
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Bounds on values

Can use the fitted convex function to estimate the click-values:

rawLB rawUB qpLB qpUB price

1 0.64 ¥ 0.76 ¥ 0.6

2 0.57 0.54 0.63 0.65 0.5

3 0.53 0.38 0.42 0.42 0.32

4 0.25 0.42 0.32 0.33 0.22

5 0.24 0.26 0.33 0.33 0.22

6 1.06 0.42 0.57 0.57 0.38

7 0.67 0.7 0.37 0.38 0.22

8 0.05 1.25 0.05 0.69 0.36
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Bounds on values, cont.

rawLB rawUB qpLB qpUB price

1 0.6 ¥ 0.78 ¥ 0.56

2 0.53 0.47 0.59 0.6 0.43

3 1.39 0.91 0.99 1.01 0.68

4 0.92 1.42 0.94 1.01 0.55

5 0.77 1.24 1.14 1.26 0.66

6 0.5 0.5 0.73 0.74 0.41

7 1.39 0.37 0.53 0.54 0.3

8 0.05 1.35 0.05 0.51 0.23

20   google-auction-preso-nz.nb



Bounds on values, cont.

1) Nash equilibrium describes the data well.

2) Values are usually reasonable, often roughly twice the bids.

3) Position RHS1 often has a high value, possibly due to promotion policy (which isn't  modeled here), or to preference for first
position, or for impression value.

4) If the expenditure profile is flat, the clicks values are about the same.  If it is highly convex, the values are quite different.
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Incentives

The Google auction does not result in truthful bidding.  What about VCG auction which has truthful revelation?

Each advertiser reports his value-per-click,  ri.  Google assigns advertisers to positions to maximize value of page.  Payment of

advertiser i = value accruing to other advertisers if i is present - value accruing to other advertisers if i is absent.

If i is absent, each advertiser below him shifts up by 1 slot, so i's  payment is:

payment by i = â
j>i

r jIx j-1 - x jM

Note that when ri = vi  this is the same as the lower bound on the SNE!  This is true more generally; see Demange and Gale
(1985) and Roth and Sotomayor (1990).
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