Secure Multi-Party Computation Tutorial

Fattaneh Bayatbabolghani* and Marina Blanton†

*University of California, Berkeley
†University at Buffalo, The State University of New York

ACM Conference on Computer and Communications Security

October 2018
• Introduction
 – motivation
 – security definition

• Garbled circuit evaluation
 – Yao’s protocol
 – oblivious transfer and its extensions
 – garbled circuit optimizations
 – malicious adversary techniques
Outline

- **Secret sharing**
 - Shamir secret sharing
 - operations on shares
 - malicious adversary techniques

- **Compilers**
 - secure two-party compilers
 - secure multi-party compilers

- **Summary**
Why do we talk about protecting data privacy?
• Larger and larger volumes of data are being collected about individuals
 – one’s shopping behavior, geo location and moving patterns, interests and hobbies, exercise patterns, etc.

• Even intended analysis and use of data is scary, but it is also prone to abuse
 – information about individuals collected by an entity can be legitimately sold to others
 – large datasets with sensitive information are an attractive target for insider abuse
 – data breaches are more common than what we know
There are many different ways to protect private, proprietary, classified or otherwise sensitive information

- this tutorial will cover some of such techniques

Protection techniques include:

- computing on private data without revealing the data
- anonymous communication and authentication
- applications that provide anonymity (e-cash, voting, etc.)
Secure multi-party computation allows two or more individuals to jointly evaluate a function on their respective private data

- security guarantees allow for no unintended information leakage
- only output of the computation (and any information deduced from the output and individual private input) can be known to a participant
Two millionaires Alice and Bob would like to determine who is richer without revealing their worth to each other.

- **Alice**
 - private x

- **Bob**
 - private y

\rightarrow
\leftarrow
\rightarrow
\leftarrow
\rightarrow

output

$x < y$
• A number of local hospitals would like to jointly determine the most effective treatment to a rare disease
Example Secure Multi-Party Computation

• Many individuals would participate in electronic voting

• Any computation that can be done with a trusted third party (TTP) can be done without TTP
Regardless of the setup, the same strong security guarantees are expected:

- suppose there is an ideal third party that the participants trust with their data
- they send their data to TTP and receive the output
- then a multi-party protocol is secure if adversarial participants learn no more information than in the case of ideal TTP
- this is formalized through a simulation paradigm
There are two standard ways of modeling participants in SMC:

- A **semi-honest** participant complies with the prescribed computation, but might attempt to learn additional information about other participants’ data from the messages it receives.
 - It is also called honest-but-curious or passive.

- A **malicious** participant can arbitrarily deviate from the protocol’s execution in the attempt to learn unauthorized information about other participants’ data.
 - It is also called active.

There is a third type of adversarial model with **covert** participants who can act maliciously, but do not wish to be caught.
We start modeling security using the semi-honest model:

- Let n be the number of participants in secure computation.
- An adversary \mathcal{A} can corrupt and control $t < n$ of them.
- \mathcal{A} knows all information that the corrupt parties have and receive.
- Security is modeled by building a simulator $S_\mathcal{A}$ with access to the TTP that produces \mathcal{A}’s view indistinguishable from its view in real protocol execution.
 - $S_\mathcal{A}$ has \mathcal{A}’s information and TTP’s output.
 - It must simulate the view of \mathcal{A} and form outputs for all parties correctly.
The Real Model

Alice
private x

Bob
private y

protocol output

protocol output
The Ideal Model

Alice
private x

protocol output

TTP

protocol output

Bob
private y
The Security Definition

The Ideal Model

\[\approx \]

Adversary S

Adversary A

The Real Model
Security of SMC in the Semi-Honest Model

- Formal definition:
 - Let parties P_1, \ldots, P_n engage in a protocol Π that computes function $f(in_1, \ldots, in_n) \rightarrow (out_1, \ldots, out_n)$, where $in_i \in \{0, 1\}^*$ and $out_i \in \{0, 1\}^*$ denote the input and output of party P_i, respectively.
 - Let $\text{VIEW}_\Pi(P_i)$ denote the view of participant P_i during the execution of protocol Π. That is, P_i's view is formed by its input and internal random coin tosses r_i, as well as messages m_1, \ldots, m_k passed between the parties during protocol execution:
 $$\text{VIEW}_\Pi(P_i) = (in_i, r_i, m_1, \ldots, m_k).$$
 - Let $I = \{P_{i_1}, P_{i_2}, \ldots, P_{i_t}\}$ denote a subset of the participants for $t < n$ and $\text{VIEW}_\Pi(I)$ denote the combined view of participants in I during the execution of protocol Π (i.e., the union of the views of the participants in I).
Security of SMC in the Semi-Honest Model

• **Formal definition (cont.):**

 - We say that protocol \(\Pi \) is \(t \)-private in the presence of semi-honest adversaries if for each coalition of size at most \(t \) there exists a probabilistic polynomial time simulator \(S_I \) such that
 \[
 S_I(\text{in}_I, f(\text{in}_1, \ldots, \text{in}_n)) \equiv \{\text{VIEW}_\Pi(I), \text{out}_I\},
 \]
 where \(\text{in}_I = \bigcup_{P_i \in I} \{\text{in}_i\} \), \(\text{out}_I = \bigcup_{P_i \in I} \{\text{out}_i\} \), and \(\equiv \) denotes computational or statistical indistinguishability.

• **Computational indistinguishability** of two distributions means that the probability that they differ is negligible in the security parameter \(\kappa \)

 - for **statistical indistinguishability**, the difference must be negligible in the statistical security parameter
Security of SMC in the Malicious Model

- In the malicious model we have the following definition:
 - Let \prod be a protocol that computes function $f(\text{in}_1, \ldots, \text{in}_n) \rightarrow (\text{out}_1, \ldots, \text{out}_n)$, with party P_i contributing input $\text{in}_i \in \{0, 1\}^*$ and receiving output $\text{out}_i \in \{0, 1\}^*$
 - Let \mathcal{A} be an arbitrary algorithm with auxiliary input x and S be an adversary/simulator in the ideal model
 - Let $\text{REAL}_{\prod, \mathcal{A}(x), I}(\text{in}_1, \ldots, \text{in}_n)$ denote the view of adversary \mathcal{A} controlling parties in I together with the honest parties’ outputs after real protocol \prod execution
 - Similarly, let $\text{IDEAL}_{f, S(x), I}(\text{in}_1, \ldots, \text{in}_n)$ denote the view of S and outputs of honest parties after ideal execution of function f
Security of SMC in the Malicious Model

• Formal definition (cont.):

 We say that Π t-securely computes f if for each coalition I of size at most t, every probabilistic adversary \mathcal{A} in the real model, all $in_i \in \{0, 1\}^*$ and $x \in \{0, 1\}^*$, there is probabilistic S in the ideal model that runs in time polynomial in \mathcal{A}’s runtime and

 \[
 \{\text{IDEAL}_{f,S(x),I}(in_1, \ldots, in_n)\} \equiv \{\text{REAL}_{\Pi,\mathcal{A}(x),I}(in_1, \ldots, in_n)\}
 \]
Secure Multi-Party Computation

- The setting can be further generalized to allow for more general setups

- We can distinguish between three groups of participants
 - **input parties** (data owners) contribute their private input into the computation
 - **computational parties** securely execute the computation on behalf of all participants
 - **output parties** (output recipients) receive output from the computational parties at the end of the computation

- The groups can be arbitrarily overlapping
Secure Multi-Party Computation

- The above setup allows for many interesting settings
 - e.g., a large number of participating hospitals can choose a subset of them to run the computation on behalf of all of them
 - they can also employ external parties (cloud providers) for running the computation
 - the output can be delivered to a subset of them and/or to other interested parties
- This setup also allows for secure computation outsourcing
 - one or more clients securely outsource their computation to a number of external cloud computing providers
Secure Multi-Party Computation Techniques

- **Garbled circuit evaluation**
 - two-party computation \(n = 2 \)

- **Linear secret sharing**
 - multi-party computation \(n > 2 \)

- **Homomorphic encryption**
 - two- or multi-party computation \(n \geq 2 \)
• SMC based on **garbled circuit evaluation** involves two participants: circuit garbler and circuit evaluator

• The function to be computed is represented as a Boolean circuit
 – typically we’ll use binary (two input and one output bits) gates and negation gates
 – example:
Yao’s Protocol: Garbled Circuit Evaluation

- The garbler takes a Boolean circuit and associates two random labels $\ell^0_i, \ell^1_i \in \{0, 1\}^\kappa$ with each circuit’s wire i
 - ℓ^0_i is associated with value 0 of the wire and ℓ^1_i with value 1
 - given ℓ^b_i, it is not possible to determine what b is

The garbler also encodes each gate and sends it to the evaluator

- suppose a binary gate g has input wires i and j and output wire k
- the garbler uses encryption to enable recovery of $\ell_k^g(b_i, b_j)$ given $\ell_i^{b_i}$ and $\ell_j^{b_j}$

![Diagram of garbled circuit evaluation]

Tables 1, 2, and 3 are stored in a randomly permuted order.
Yao’s Protocol: Garbled Circuit Evaluation

- The garbler sends the label corresponding to its own input bit
 - the labels are random, so the evaluator does not learn what this bit is
Yao’s Protocol: Garbled Circuit Evaluation

- The evaluator engages in 1-out-of-2 oblivious transfer (OT) with the garbler to obtain labels corresponding to its own input
 - it allows the evaluator to retrieve one out of two labels for each of its input wires, while the garbler learns nothing
Yao’s Protocol: Garbled Circuit Evaluation

- The evaluator obtains appropriate labels for the input wires and evaluates the garbled circuit one gate at a time
 - the evaluator sees labels, but doesn’t know their meaning

![Garbled Circuit Diagram]

- tables 1, 2, and 3 are stored in a randomly permuted order
Yao’s Protocol: Garbled Circuit Evaluation

• At the end of the protocol execution, both parties, one of them, or an external party can learn the output of the protocol execution

• Yao’s construction gives a constant-round protocol for secure computation of any function in the semi-honest model
 – the number of rounds does not depend on the number of inputs or the size of the circuit

• The basic technique is secure in the presence of semi-honest garbler and malicious evaluator
 – it can be extended to be secure in the malicious model using additional techniques
• **Oblivious Transfer** is a secure two-party protocol, in which the sender holds a number of inputs and the receiver’s obtains one of them based on its choice
 – it is used extensively in garbled circuit evaluation
 • at least one OT per input bit, typically an efficiency bottleneck
 – it is also a common tool in other protocols

• Here we are interested in **1-out-of-2 OT**, with the sender holding two inputs a_0 and a_1 and the sender holding a bit b

• **OT extension** allows m (1-out-of-2) OTs to be realized using a constant number of regular OT protocols with small additional overhead linear in m
The literature contains many realizations of OT and OT extensions including [NP01, IKNP03, ALSZ13, ALSZ15]

Naor-Pinkas OT

- Naor-Pinkas OT [NP01] is an efficient construction secure in the malicious model
 - sender S inputs two strings ℓ_0 and ℓ_1 and receiver R inputs a bit b
 - common input consists of group \mathbb{G} of prime order q, its generator g, and a random element C' of \mathbb{G} (chosen by S)
 - after the protocol, R learns ℓ_b and S learns nothing
• S chooses random $r \in \mathbb{Z}_q$ and computes C^r and g^r
Naor-Pinkas OT

- Receiver R:
 - chooses random \(k \in \mathbb{Z}_q^* \)
 - sets public keys \(PK_b = g^k \) and \(PK_{1-b} = C / PK_b \)
 - sends \(PK_0 \) to S

\(k, PK_b, \) and \(PK_{1-b} \)
• Consequently, sender S
 – computes \((PK_0)^r\) and \((PK_1)^r = C^r/(PK_0)^r\)
 – sends to R \(g^r\) and two encryptions \(E_0 = H((PK_0)^r, 0) \oplus \ell_0\) and \(E_1 = H((PK_1)^r, 1) \oplus \ell_1\)
 – here \(H\) is a hash function (modeled as a random oracle)

\((PK_0)^r, (PK_1)^r, E_0, \text{ and } E_1\)
R computes $H((g^r)^k) = H((PK_b)^r)$ and uses it to recover ℓ_b.
ALSZ13 OT Extension (Semi-Honest)

- Asharov-Lindell-Schneider-Zohner OT extension trades public-key operations for symmetric-key operations and communication.

- Let sender S hold private binary strings (ℓ^0_i, ℓ^1_i) for $i \in [1,m]$ and receiver R hold m private bits $b = b_1 \ldots b_m$.

- As output, R receives $(\ell^b_1, \ldots, \ell^b_m)$ and S learns nothing.
• S chooses a random string \(s = s_1 \ldots s_\kappa \in \{0, 1\}^\kappa \), where \(\kappa \) is a symmetric-key security parameter.
• R chooses κ pairs of random κ-bit strings (k_i^0, k_i^1) for $i = 1, \ldots, \kappa$
• S and R perform κ OTs secure against semi-honest parties, with their roles reversed

 – R enters (k^0_i, k^1_i) into the ith OT
 – S inputs s_i
 – S learns $k^{s_i}_i$

\[s \quad \leftarrow \quad (k^0_i, k^1_i) \quad \text{for} \quad i = 1, \ldots, \kappa \]

\[(k^1_1, \ldots, k^{s_\kappa}_\kappa) \]
• Let $t^i = \text{PRG}(k^0_i)$ for $i = 1, \ldots, \kappa$ and PRG : $\{0, 1\}^\kappa \rightarrow \{0, 1\}^m$

• Let $T = [t^1 \mid \ldots \mid t^\kappa]$ denote the $m \times \kappa$ matrix with its ith column being t^i and jth row being t_j
ALSZ13 OT Extension (Semi-Honest)

- R computes $t^i = \text{PRG}(k^0_i)$, $u^i = \text{PRG}(k^0_i) \oplus \text{PRG}(k^1_i) \oplus b$ for $i = 1, \ldots, \kappa$ and sends each u^i to S.
ALSZ13 OT Extension (Semi-Honest)

- S defines $q^i = (s_i \cdot u^i) \oplus \text{PRG}(k_{s_i}^{s_i}) = (s_i \cdot b) \oplus t^i$ for $i = 1, \ldots, \kappa$

- Let $Q = [q^1 | \ldots | q^\kappa]$ denote the $m \times \kappa$ matrix with its ith column being q^i and jth row being q_j where $i = 1, \ldots, \tau$ and $j = 1, \ldots, m$

 - i.e., $q^i = (s_i \cdot b) \oplus t^i$ and $q_j = (b_j \cdot s) \oplus t_j$

$$
\begin{array}{cccc}
q^1 & q^2 & q^3 & \ldots & q^\kappa \\
q_1^1 & q_1^2 & q_1^3 & \ldots & q_1^\kappa \\
q_1^2 & q_2^2 & q_2^3 & \ldots & q_2^\kappa \\
q_1^3 & q_3^2 & q_3^3 & \ldots & q_3^\kappa \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
q_1^m & q_m^2 & q_m^3 & \ldots & q_m^\kappa \\
\end{array}
$$

CCS 2018

Fattaneh Bayatbabolghani and Marina Blanton
ALSZ13 OT Extension (Semi-Honest)

- **S** sends to **R** \((w_i^0, w_i^1)\) for \(i = 1, \ldots, m\), where \(w_i^0 = \ell_i^0 \oplus H(i, q_i)\) and \(w_i^1 = \ell_i^1 \oplus H(i, q_i \oplus s)\)
R computes $\ell_i^{b_i} = w_i \oplus H(i, t_i)$ for $i = 1, \ldots, m$
The semi-honest OT extension above can be made secure in the presence of malicious adversaries with a few changes:

- R chooses sets $b' = b||r$ for a random $r \in \{0, 1\}^\kappa$ and uses b' in place of b
- s is of size $\tau = \kappa + \rho$, where ρ is a statistical security parameter
- this changes the number of based OTs from κ to τ and matrix dimensions from $m \times \kappa$ to $(m + \kappa) \times \tau$
- consistency check is required to enforce that the same b' is used to form each u^i
• **Consistency check** cross-checks information about each u^i against u^j’s information for each (i, j) pair

 - for every pair $(i, j) \in [1, \tau]^2$, R computes four values:
 \[
 h_{(i,j)}^{(0,0)} = H(\text{PRG}(k_i^0) \oplus \text{PRG}(k_j^0)), \quad h_{(i,j)}^{(0,1)} = H(\text{PRG}(k_i^0) \oplus \text{PRG}(k_j^1))
 \]
 \[
 h_{(i,j)}^{(1,0)} = H(\text{PRG}(k_i^1) \oplus \text{PRG}(k_j^0)), \quad h_{(i,j)}^{(1,1)} = H(\text{PRG}(k_i^1) \oplus \text{PRG}(k_j^1))
 \]
 and sends them to S

 - for every pair $(i, j) \in [1, \tau]^2$, S checks that
 - $h_{(i,j)}^{(s_i,s_j)} = H(\text{PRG}(k_i^{s_i}) \oplus \text{PRG}(k_j^{s_j}))$
 - $h_{(i,j)}^{(\overline{s_i},\overline{s_j})} = H(\text{PRG}(k_i^{s_i}) \oplus \text{PRG}(k_j^{s_j}) \oplus u^i \oplus u^j)$
 - $u^i \neq u^j$
Multiple optimizations that improve performance of garbled circuit evaluation are known

- the “free XOR” technique which allows XOR gates to be evaluated very cheaply
- the garbled row reduction technique which reduces the size of garbled gates
- the half-gates optimization which further reduces the size of garbled gates
- performing garbling in a way to permit the use of fixed-key (hardware accelerated) AES which greatly improves the speed of garbling and evaluation
- Garbler has a global secret R and construct labels as follows:

\[
\begin{align*}
\ell_a^0 &= \ell_a^0 \\ \ell_a^1 &= \ell_a^0 \oplus R \\
\ell_b^0 &= \ell_b^0 \\ \ell_b^1 &= \ell_b^0 \oplus R \\
\ell_e^0 &= \ell_a^0 \oplus \ell_b^0 \\ \ell_e^1 &= \ell_e^0 \oplus R
\end{align*}
\]

\[
\ell_a^0 \oplus \ell_b^0 = \ell_a^0 \oplus \ell_b^0 \oplus R \oplus R = \ell_a^1 \oplus \ell_b^1
\]

\[
\ell_a^1 \oplus \ell_b^0 = \ell_a^0 \oplus \ell_b^0 \oplus R = \ell_a^0 \oplus \ell_b^1
\]

- No ciphertexts, encryption, or communication is needed for XOR gates!

The first garbled row reduction optimization reduces the size of a garbled gate from 4 to 3 ciphertexts.

The garbler generates the output labels such that the first entry of the garbled table is derived deterministically and no longer needs to be sent:

\[\ell_e^0 = \text{Dec}_{\ell_a^0, \ell_b^0}(0) \]

This lowers communication, but adds more computational to the garbler side.

It is also compatible with free XOR.

Garbled Row Reduction (2)

- The second garbled row reduction optimization reduces the size of a garbled gate from 4 to 2 ciphertexts.
- The evaluator uses polynomial interpolation over a quadratic curve.
- The output label is encoded as the y value on the polynomial at point 0.
- As an example for AND gate:

\[
\begin{align*}
 k_1 &= \text{Dec}_{\ell_a, \ell_b}(0), \\
 k_2 &= \text{Dec}_{\ell_a, \ell_b}(0), \\
 k_3 &= \text{Dec}_{\ell_a, \ell_b}(0), \\
 k_4 &= \text{Dec}_{\ell_a, \ell_b}(0)
\end{align*}
\]

• One point on the polynomial is revealed in the usual way and two more (the ones at $x = 5$ and $x = 6$) are included in the garbled gate

• There are two different quadratic polynomials P and Q to consider
 - P and Q are designed to intersect exactly in the two points included in the garbled gate
 - in the Case of AND gate, three points on P are $(\text{Dec}_{\ell_0}^a, \text{Dec}_{\ell_0}^b(0), \text{Dec}_{\ell_1}^a, \text{Dec}_{\ell_0}^b(0), \text{Dec}_{\ell_0}^a, \text{Dec}_{\ell_1}^b(0))$ and three points on Q are $(\text{Dec}_{\ell_1}^a, \text{Dec}_{\ell_1}^b(0), Q(5), Q(6))$(with respect to their y-value)

• This is not compatible with free XOR!
Half Gates Optimization

• Half-gates is the first optimization technique that simultaneously
 – requires only two ciphertexts per garbled AND gate
 – is compatible with the “free XOR” optimization

• It relies on the fact that

\[a \land b = (a \land (b \oplus r)) \oplus (a \land r) \]

where \(r \) is a random value chosen by the garbler

• The value of \(b \oplus r \) is revealed to the evaluator

Half Gates Optimization

- If the green rows are equal to 0 using garbled row reduction, then there are only two ciphertexts are transmit

\[a \land r \]

Garbler knows \(r \)

\[\text{Enc}_{\ell_a}(\ell_e) \]

\[\text{Enc}_{\ell_a \oplus R}(\ell_e \oplus rR) \]

Evaluator knows \(b \oplus r \)

\[a \land (b \oplus r) \]

Half gates and garbled row reduction techniques reduce bandwidth associated with transmitting garbled gates
Using Fixed-Key Blockcipher

- This optimization modifies how garbled gates are constructed to use fixed-key AES encryption instead of hash functions.
- AES hardware implementations are widely available on commodity hardware and allow for significant computation speedup.
- This technique is compatible with the “free XOR” and row reduction techniques.

Yao’s garbled circuit evaluation is not secure in the presence of a malicious garbler

- there is the need to enforce correct circuit construction and several solutions exist [GMW91], [GMW87], [LP07], [SS11], [L13]
- we focus on cut-and-choose approaches [LP07], [SS11], [L13]

[GMW91] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems,” 1991.

• The garbler generates s independent garblings of a circuit C and opens the circuits of the evaluator’s choice
The garbler generates s independently garbled versions of circuit C

The evaluator asks the garbler to open a number of circuits of its choice and garbler reveals the randomness/keys

The evaluator verifies correctness of the opened circuits

The parties run OT/OT extension to retrieve the labels corresponding to the evaluator’s input for the unopened circuits

The garbler sends the labels corresponding its own input for the unopened circuits

The evaluator evaluates the unopened circuits, and returns the majority output
• Lindell-Pinkas solution proposed the use of cut-and-choose

• By opening a half of the garbled circuits and evaluating the other half, output is incorrect with probability at most $2^{-0.311}$
Shelat-Shen construction used the cut-and-choose approach and proposes novel defence mechanisms for input consistency, selective failure, and output authentication.

It showed that if the garbler opens 60\% of the constructed circuits instead of 50\%, the error decreases from $2^{-0.311s}$ to $2^{-0.32s}$.

- to achieve the error of 2^{-40}, we need approximately 125 circuits instead of 128.
Garbled Circuit Evaluation (Malicious) [L13]

- How many circuits needed to be garbled to ensure correct output?
 - previously, for error probability of 2^{-40}, 125 circuits were needed
 - this is a heavy computational overhead compared to the semi-honest solution

- Lindell proposed an optimized cut-and-choose solution that required only s circuits with some small additional overhead to achieve error of 2^{-s}
• Why do we need the majority of the circuits to be correct?
 – an incorrect circuit may compute the desired function if the evaluator’s input meets some condition and otherwise compute garbage
 – if the evaluator aborts, it means the garbler knows that the evaluator’s input does not meet the condition
 – if the evaluator does not abort, it means the garbler knows that the evaluator’s input meets the condition
 – we must enforce that most evaluated circuits are correct with overwhelming probability
• Even if all opened circuits out of s are correct and all unopened circuits are incorrect, the error probability is still bounded by 2^{-s}

• How is it possible?
 – both parties run small additional secure computation
 – if the evaluator receives two different outputs in two different circuits, the additional secure computation allows him to learn the garbler’s input
 – in this case, the evaluator can compute the original function f by himself because it knows both inputs
 – the garbler does not know which case happened
• The cut-and-choose technique alone does not provide full security

• Additional attacks:
 – input consistency
 – selective failure
 – output authentication
Input Consistency

- When multiple circuits are being evaluated in cut-and-choose, a malicious garbler can provide inconsistent inputs to different evaluation circuits
 - after obtaining the output, the garbler can extract information about the evaluator’s input

- Defenses:
 - equality checker [MF06]
 - input commitment [LP07]
 - pseudorandom synthesizer [LP11]
 - malleable claw-free collections [SS11]

Selective Failure

• A malicious garbler can also use inconsistent labels during garbling and later during OT

• The evaluator’s input can be inferred from whether or not the protocol completes

• Defenses:
 – random input replacement: input bit b is replaced ρ random bits b_i
 subject to $b = b_1 \oplus b_2 \oplus \ldots \oplus b_\rho$ [LP07]
 – committing OT [K08] [SS11]
 – combining OT and the cut-and-choose steps into one protocol [LP11]

In many cases, both the garbler and evaluator receive outputs from secure function evaluation, i.e., $f(x, y) = (f_1(x, y), f_2(x, y))$

A malicious evaluator may claim an arbitrary value to be the generator’s output coming from circuit evaluation.

Defenses:

- verifying authenticity of the garbler’s output by modifying the function as $f(x, y) = (f_1(x, y) \oplus c, f_2(x, y))$ and computing its MAC [LP07]
- using zero knowledge proofs [K08]
- using a signature-based solution [SS11]
An alternative technique is to use threshold linear secret sharing for secure multi-party computation

-

\((n, t)\)-threshold secret sharing allows secret \(v\) to be secret-shared among \(n\) parties such that:

- no coalition of \(t\) or fewer parties can recover any information about \(v\)
- \(t + 1\) or more shares can be used to efficiently reconstruct \(v\)

- information-theoretic security (i.e., independent of security parameters) is achieved
Shamir’s \((n, t)\)-Threshold Scheme

- Given \(n\) points on the plane \((x_1, y_1), \ldots, (x_n, y_n)\) where all \(x_i\)s are distinct, there exists an unique polynomial \(f\) of degree \(\leq n - 1\) such that \(f(x_i) = y_i\) for \(i = 1, \ldots, n\)

 - \(f\) can be determined using Lagrange interpolation

- This also holds in a finite field, e.g., in \(\mathbb{Z}_p\) where \(p\) is prime

\[\text{[S79] A. Shamir, “How to share a secret,” 1979.}\]
Shamir’s \((n, t)\)-Threshold Scheme

- Shamir secret sharing works as follows
 - suppose we use finite field \(\mathbb{Z}_p\) for a prime \(p\)
 - choose prime \(p\) of sufficient size to represent all values
 - any private value \(v\) is represented as an element in \(\mathbb{Z}_p\)
 - to create shares, choose polynomial
 \[f(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_t x^t \mod p, \]
 where \(a_1, \ldots, a_t\) are random and \(a_0 = v\)
 - let \([v]\) secret shared \(v\) and \([v]_i = (i, f(i))\) represent the share
 distributed to the \(i\)th party for \(i \in [1, n]\)
Shamir’s (n, t)-Threshold Scheme
Shamir’s \((n, t)\)-Threshold Scheme

- The secret \(v\) can be reconstructed from every subset of \(t + 1\) or more shares \((x_i, y_i)\) using Langrange interpolation

\[
f(x) = \sum_{i=1}^{t+1} y_i \prod_{j=1, j \neq i}^{t+1} \frac{x - x_j}{x_i - x_j} \mod p
\]

\[
v = f(0) = \sum_{i=1}^{t+1} y_i \prod_{j=1, j \neq i}^{t+1} \frac{-x_j}{x_i - x_j} \mod p
\]

- Any \(t\) or fewer shares do not leak any information about \(v\)
SMC based on Shamir Secret Sharing

- Function evaluation is normally expressed using composition of elementary operations
 - functions represented in terms of additions/subtractions and multiplications are called arithmetic circuits
- Performance of any function in this framework is measured in terms of
 - the number of elementary interactive operations
 - the number of sequential interactive operations or rounds
Shamir’s secret sharing is a **linear secret sharing scheme**
- any linear combination of secret shared values can be computed directly on the shares

Example: addition
- let $f_1(x) = v_1 + a_1 x + a_2 x^2 + \ldots + a_t x^t$ and $f_2(x) = v_2 + a'_1 x + a'_2 x^2 + \ldots + a'_t x^t$
- then $g(x) = f_1(x) + f_2(x) = v_1 + v_2 + (a_1 + a'_1)x + (a_2 + a'_2)x^2 + \ldots + (a_t + a'_t)x^t$
- this means that any party can compute its share of $v_1 + v_2$ as $[v_1]_i + [v_2]_i$ for each i
- subtraction is performed in a similar way
Multiplication Operation

- Example: **scalar multiplication**
 - we can multiply secret-shared v by known integer c by directly multiplying each share by c
 - if $f(x) = v + a_1x + a_2x^2 + \ldots + a_tx^t$, then
 $$g(x) = c \cdot f(x) = c \cdot v + (c \cdot a_1)x + (c \cdot a_2)x^2 + \ldots + (c \cdot a_t)x^t$$
 - $[c \cdot v]_i = c[v]_i$ for each i

- What about multiplication of two secret values?
• To multiply $[v_1]$ and $[v_2]$, each party could locally multiply its shares

 - the product of their representation as $f_1(x)$ and $f_2(x)$ is
 \[g(x) = f_1(x) \cdot f_2(x) = v_1 \cdot v_2 + \lambda_1 x + \lambda_2 x^2 + \ldots + \lambda_{2t} x^{2t} \]

 - the polynomials are no longer of degree t, but rather of degree $2t$

 - reduction of the polynomial’s degree is needed
Multiplication Operation

• We can write

\[
\begin{bmatrix}
\nu_1 \cdot \nu_2 \\
\lambda_1 \\
\cdot \\
\cdot \\
\lambda_{2t}
\end{bmatrix} A =
\begin{bmatrix}
g(0) \\
g(1) \\
\cdot \\
\cdot \\
g(2t)
\end{bmatrix}
\]

where \(A \) is \((2t + 1) \times (2t + 1)\) matrix and is defined as \(a_{ij} = i^j - 1\)

– \(A \) is non-singular and has inverse \(A^{-1} \)

– let the first row of \(A^{-1} \) be \([\gamma_0, \gamma_1, \ldots, \gamma_{2t}]\)

The inverse equation implies that
\[v_1 \cdot v_2 = g(0)\gamma_0 + g(1)\gamma_1 + \ldots + g(2t)\gamma_{2t} \]

Every player \(i \) chooses a random polynomial \(h_i(x) \) of degree \(t \) such that \(h_i(0) = g(i) \)

Let \(H(x) \) be defined as \(\sum_{i=0}^{2t} \gamma_i h_i(x) \), where \(H(0) = v_1 \cdot v_2 \)

- this dictates that \(2t < n \)

Each player \(i \) distributes shares \((j, h_i(j))\) to other players

- now each player \(j \) can compute its own share of \(v_1 \cdot v_2 \) as \((j, H(j))\)

Polynomial \(H(x) \) is of degree \(t \) and it is random
Multiplication Operation
• SMC based on secret sharing supports the flexible setup with three groups of participants:

 – each data owner secret-shares its private input among the computational parties prior to the computation

 – the computational parties evaluate the function on secret-shared data

 – the computational parties communicate their shares of the result to output recipients who locally reconstruct the output
A number of techniques are available to strengthen the security guarantees to hold in the malicious model.

- Traditionally security has been guaranteed by using verifiable secret sharing techniques.
 - Each multiplication is followed by a zero-knowledge proof of knowledge that the operation was carried out correctly.
 - Additional zero-knowledge proofs may be used to prove correct sharing of input or other additional operations.

- More recently computation employs a different structure.
• **Damgård-Nielsen construction** works for both semi-honest and malicious models with honest majority

• Multiplication is performed using **multiplication triples**
 – multiplication triples are of the form \((a, b, c)\) with \(c = ab\)
 – each of \(a\), \(b\), and \(c\) is represented using uniformly random \(t\)-sharings
 – triples are generated during the preprocessing phase
 – they are consumed during the online phase

To generate a triple

1. the parties compute a random value and its two sharings: t-sharing $[r]$ and $2t$-sharing $\langle R \rangle$

2. all locally parties compute $\langle D \rangle = [a][b] + \langle R \rangle$ on their own shares where shares of random a and b are given

3. all parties open D which is a uniformly random $2t$-sharing

4. all parties compute $[c] = D - [r]$ with known D and random t-sharing r (which equals to R)

5. each party has its own share of (a, b, c)
Damgård-Nielsen Construction (Malicious)

- During online phase, multiplication of secret-shared \([x]\) and \([y]\) is as follows:
 1. choose a fresh triple \([a], [b], [c]\)
 2. all parties compute \([\alpha] = [x] + [a]\) and \([\beta] = [y] + [b]\)
 3. all parties open \(\alpha\) and \(\beta\)
 4. all parties compute \([xy] = -\alpha\beta + \alpha[y] + \beta[x] - [c]\)
• Inputs are entered using pre-computed random t-sharings $[r]$ known to one party
 – to enter input x, the input owner computes $\delta = x + r$ and broadcasts δ to others
 – all players compute $[x] = \delta - [r]$

• To make it secure in the presence of malicious parties
 – small portions of the protocol utilize verifiable secret sharing (VSS) for generating random elements
 – conflict resolution algorithm is used to enforce consistent sharings
 • many values are verified in a batch
SMC based on Secret Sharing (Malicious)

- **SPDZ** is another construction that works for malicious models with up to \(n - 1 \) corrupted parties
 - with no majority, the rules of the game change
 - if at least one party misbehaves or aborts, the computation cannot continue
 - we use \((n, n - 1)\) secret sharing
 - party \(i \) holds \(a_i \) such that \(a = a_1 + a_2 + \cdots + a_n \)

SPDZ (Malicious)

- **SPDZ** uses the same idea high-level structure as [DN07]
 - computation is divided into the preprocessing and online phases
 - all the expensive public-key operations are performed during preprocessing
 - the online phase is very efficient

- **Multiplication** also uses precomputed triples
 - this time they are generated using somewhat homomorphic encryption (SHE)
 - zero-knowledge proofs of plaintext knowledge (ZKPoPKs) are used to ensure that the parties encrypt data as they should using SHE
• Computation proceeds on a different representation

 – each private a is secret-shared as
 \[
 \langle a \rangle = (\delta, (a_1, \ldots, a_n), (\gamma(a)_1, \ldots, \gamma(a)_n))
 \]

 – here $\gamma(a) = \alpha(a + \delta)$ is a MAC on a

 – α is a global private (secret-shared) value (MAC key)

 – each δ is public

 – each party i holds a_i and $\gamma(a)_i$ and each operation updates both values
• **SPDZ online computation**

 – inputs are entered using pre-generated random values

 – additions are local

 – multiplications consume multiplication triples and are partially open to verify correctness

 – at the end of the computation, the parties open the MAC key α

 – they verify that the MACs on the output (secret-shared) values match the values

 • compute randomized difference, open it, and check for non-zero values

 – if any issues are detected, abort; otherwise, open the results
SPDZ Followup Work

- SPDZ is attractive because of the strong security guarantees and fast online computation
- A number of improved results followed
 - improvements to the offline phase
 - reusability of the MAC key
 - lightweight protocol for covert adversaries

Compilers for Secure Two-Party Computation

<table>
<thead>
<tr>
<th>Compiler</th>
<th>PL</th>
<th>AND gate</th>
<th>BW</th>
<th>Adapted by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fairplay</td>
<td>Java</td>
<td>30 gates/sec</td>
<td>900Bps</td>
<td>CBMC-GC, PCF, SCVM</td>
</tr>
<tr>
<td>FastGC</td>
<td>Java</td>
<td>96K gates/sec</td>
<td>2.8MBps</td>
<td>ObliVM, GraphSc</td>
</tr>
<tr>
<td>ObliVM-GC</td>
<td>Java</td>
<td>670K gates/sec</td>
<td>19.6MBps</td>
<td>ObliVM, GraphSc</td>
</tr>
<tr>
<td>GraphSC</td>
<td>Java</td>
<td>580K gates/sec</td>
<td>16MBps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>per pair of cores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JustGarble</td>
<td>C</td>
<td>11M gates/sec</td>
<td>315MBps</td>
<td>TinyGarble</td>
</tr>
<tr>
<td></td>
<td>AES-NI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table is adapted from ObliVM

JustGarble only provides garbling/evaluation (not an end-to-end system)
Compilers for Secure Multi-Party Computation

<table>
<thead>
<tr>
<th>Compiler</th>
<th>No. parties</th>
<th>Parallelism</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharemind</td>
<td>3</td>
<td>arrays</td>
<td>non-int arithmetic</td>
</tr>
<tr>
<td>VIFF</td>
<td>≥ 3</td>
<td>interactive op</td>
<td>varying precision</td>
</tr>
<tr>
<td>PICCO</td>
<td>≥ 3</td>
<td>loops, arrays, and user-specified</td>
<td>non-int arithmetic, varying precision</td>
</tr>
<tr>
<td>SPDZ</td>
<td>≥ 3</td>
<td>user-specified</td>
<td>non-int arithmetic, non-arithmetic</td>
</tr>
</tbody>
</table>

- The table is adapted from PICCO

Summary of SMC Techniques

• The two types of SMC techniques described so far can be used to evaluate any function securely
 – depending on the computation, one might be preferred over the other

• A large number of custom protocols for specific functions also exist
 – example: private set intersection
 – these can combine the above techniques or use custom approaches
 – the goal of custom protocols is to outperform general solutions