Compositional Semantics

Jacob Andreas
Problem 1

Each of the three girls has a platypus.

Each of the three girls climbed the mountain.

How many platypuses?

How many mountains?
Problem 1

Each of the three girls has a platypus.
Each of the three girls climbed the mountain.
There are 128 cities in South Carolina.

<table>
<thead>
<tr>
<th>name</th>
<th>type</th>
<th>coastal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbia</td>
<td>city</td>
<td>no</td>
</tr>
<tr>
<td>Cooper</td>
<td>river</td>
<td>yes</td>
</tr>
<tr>
<td>Charleston</td>
<td>city</td>
<td>yes</td>
</tr>
</tbody>
</table>
Barack Obama was the 44th President of the United States. *Obama was born on August 4 in Honolulu, Hawaii.* In late August 1961, Obama's mother moved with him to the University of Washington in Seattle for a year…

Is Barack Obama from the United States?
It’s not enough to have structured representations of syntax: We also need structured representations of **meaning**.
It’s not enough to have structured representations of syntax: We also need structured representations of meaning.

Today:
How do we get from language to meaning?
PART I
What is meaning?
 Meaning in formal languages

\[a + b = 17 \]
Meaning in formal languages

\[a + b = 17 \]
Meaning in formal languages

\[a + b = 17 \]

\[a = ? \]

\[b = ? \]
Meanings are sets of valid assignments

\[a + b = 17 \]

- \(\{a=0, b=0\} \)
- \(\{a=3, b=10\} \)
- \(\{a=5, b=12\} \)
- \(\{a=17, b=0\} \)
- \(\{a=10, b=7\} \)
- \(\{a=5, b=5\} \)
Meanings are sets of valid assignments

\[a + b = 17 \]

\[\begin{align*}
\{a=0, b=0\} & \times \\
\{a=3, b=10\} & \times \\
\{a=5, b=12\} & \checkmark \\
\{a=17, b=0\} & \checkmark \\
\{a=10, b=7\} & \checkmark \\
\{a=5, b=5\} & \times
\end{align*} \]
Meanings are sets of valid assignments

\[a + 3 = 20 - b \]

- \{a=0, b=0\} \times
- \{a=3, b=10\} \times
- \{a=5, b=12\} \checkmark
- \{a=17, b=0\} \checkmark
- \{a=10, b=7\} \checkmark
- \{a=5, b=5\} \times
Meanings are *functions* that judge validity

\[
\begin{align*}
\text{Meanings are } & \text{*functions* that judge validity} \\
\{a=5, b=12\} & \rightarrow [a + b = 17] \\
\end{align*}
\]
Meanings are *functions* that judge validity

\[a + b = 17 \]

\{a=3, b=10\} ×
Lessons from math

\[a + b = 17 \]

The meaning of a statement is the set of possible worlds consistent with that statement.

Here, a “possible world” is an assignment of values to variables.

\{a=3, b=10\}
Pat likes Sal.
Representing possible worlds

<table>
<thead>
<tr>
<th>Individuals</th>
<th>Pat</th>
<th>Sal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td>whale ←</td>
<td>sad ←</td>
</tr>
<tr>
<td>Relations</td>
<td>loves ➔</td>
<td>contains ➔</td>
</tr>
</tbody>
</table>
Example world

Pat

Sal

Sam

Lou
Example world

- Worried is related to Pat.
- Loves and likes connect Sam to Pat.
- Likes connects Sal to Pat and Sam.
- Contains connects Lou to Sam.
- Shark connects Lou to Sam.
- Happy connects Sal to Lou.
Different example world

- Pat loves Sal
- Sal loves Sam
- Sam loves Pat
- Lou is sad
Representing possible worlds

Individuals
- **Pat**
- **Sal**

Properties
- whale={Lou}, sad={Pat, Sal}

Relations
- likes={((Pat, Sal), (Sal, Sam))}
Pat likes Sal.
Lou is a shark.
Sam is inside Lou, a shark.
The meaning of a sentence is the set of possible worlds it picks out.
PART II

How is meaning constructed?
Explicit representation is too hard

Pat likes Sal.
Meanings as functions
Meanings as logical statements

\[\text{[Pat likes Sal]} \]

likes(Pat, Sal)
Pat likes Sal
likes(Pat, Sal)
Meanings as logical statements

Lou is a shark

shark(Lou)
Meanings as logical statements

Sam is inside Lou, a shark
Sam is inside Lou, a shark

\[
\text{shark}(\text{Lou}) \land \text{contains}(\text{Lou}, \text{Sam})
\]
Meanings as logical statements

Nobody likes Lou
Meanings as logical statements

Nobody likes Lou

∀x. ¬likes(x, Lou)
Meanings as logical statements

Everyone who knows Sal is happy
Meanings as logical statements

Everyone who knows Sal is happy

\(\forall x. \, \text{knows}(x, \text{Sal}) \rightarrow \text{happy}(x) \)
KEY IDEA

Collections of possible worlds can be compactly represented with logical forms.
Compositionality of meaning

Pat likes Sal

Lou is a shark

Sam is inside Lou, a shark

Nobody likes Lou

likes(Pat, Sal)

shark(Lou)

shark(Lou) ∧ contains(Lou, Sam)

∀x.¬likes(x, Lou)
Pat likes Sal

Lou is a shark

Sam is inside Lou, a shark

Nobody likes Lou

Compositionality of meaning
Compositionality of meaning

Pat likes Sal: \text{likes(Pat, Sal)}

Lou is a shark: \text{shark(Lou)}

Sam is inside Lou, a shark: \text{shark(Lou)} \land \text{contains(Lou, Sam)}

Nobody likes Lou: \forall x. \neg \text{likes(x, Lou)}
Compositionality of meaning

A Sal le gusta Pat

Lou es un tiburón

Sam está dentro de Lou, un tiburón

A nadie le gusta Lou

\[\text{likes}(Pat, Sal) \]

\[\text{shark}(Lou) \]

\[\text{shark}(Lou) \land \text{contains}(Lou, Sam) \]

\[\forall x. \neg \text{likes}(x, Lou) \]
Compositionality of meaning

\[
\begin{align*}
a_{12} & \ b_5 \ c_{67} \ a_8 & \text{likes}(\text{Pat, Sal}) \\
a_{12} & \ b_5 \ c_0 \ a_0 & \text{shark}(\text{Lou}) \\
a_{12} & \ b_{16} \ c_{12} \ c_{12} & \text{shark}(\text{Lou}) \wedge \text{contains}(\text{Lou, Sam}) \\
a_{53} & & \forall x. \neg \text{likes}(x, \text{Lou})
\end{align*}
\]
KEY IDEA

Pieces of logical forms correspond to pieces of language
Building a lexicon

Sam is inside Lou, a shark \[\text{shark}(\text{Lou}) \land \text{contains}(\text{Lou}, \text{Sam})\]

Pat: Pat
Sal: Sal
Sam: Sam
Lou: Lou
Building a lexicon

Sam is inside Lou, a shark, \(\text{shark}(\text{Lou}) \land \text{contains}(\text{Lou}, \text{Sam}) \)

Pat: Pat
Sal: Sal
Sam: Sam
Lou: Lou
Building a lexicon

Sam is inside Lou, a shark \(\text{shark}(\text{Lou}) \land \text{contains}(\text{Lou}, \text{Sam}) \)

Pat: Pat \hspace{1cm} \text{shark: } \lambda x.\text{shark}(x)\hspace{1cm} \\
Sal: Sal \\
Sam: Sam \\
Lou: Lou
Building a lexicon

\[\text{Sam is inside Lou, a shark} \quad \text{shark}(\text{Lou}) \land \text{contains(Lou, Sam)}\]

\begin{align*}
\text{Pat: Pat} & \quad \text{shark: } \lambda x.\text{shark}(x) \\
\text{Sal: Sal} & \quad \text{likes: } \lambda yx.\text{likes}(x, y) \\
\text{Sam: Sam} & \quad \text{nobody: } \lambda f.\forall x.\neg f(x) \\
\text{Lou: Lou} & \quad \ldots
\end{align*}
What do we do now?

Pat sent Lou a letter

\[\lambda xy.\text{sent}(x,y,z) \quad \lambda f.\text{Ax.f}(x) \quad \lambda x.\text{letter}(x) \]
What do we do now?

What do we do now?

What do we do now?
What do we do now?

[Diagram showing logical expressions involving Pat, Lou, and a letter, with lambda expressions for sent and letter]
What do we do now?

letter($\lambda f. Ax. f(x)$)?
What do we do now?

- Pat: $\lambda y z x . \text{sent}(x, y, z)$
- Lou: $\lambda f . \text{Ax.f}(x)$
- $\lambda x . \text{letter}(x)$
What do we do now?

Pat sent Lou urgently

λyzx.sent(x,y,z)
Semantic types

\[\text{Pat} \quad \text{sent} \quad \text{Lou} \quad \text{a} \quad \text{letter} \]

\[\lambda yzx.\text{sent}(x,y,z) \quad \lambda f.\text{Ax.f}(x) \quad \lambda x.\text{letter}(x) \]

Object \downarrow \text{Bool} \quad \text{Object} \downarrow \text{Bool} \quad \text{Object} \downarrow \text{Bool}
Semantic types & syntax

Pat sent Lou a letter

\(\lambda yzx.\text{sent}(x,y,z) \) \(\lambda f.\text{Ax.f}(x) \) \(\lambda x.\text{letter}(x) \)

NP, NP, NP

NP, NP, NP

NP

NP

NP

NP

NP

NP

NP
Semantic types & syntax

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pat</td>
<td>sent</td>
<td>Lou</td>
<td>a</td>
<td>letter</td>
<td></td>
</tr>
<tr>
<td>Pat</td>
<td>(\lambda yzx.\text{sent}(x,y,z))</td>
<td>Lou</td>
<td>(\lambda f.\text{Ax}.f(x))</td>
<td>(\lambda x.\text{letter}(x))</td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>(((S</td>
<td>NP)</td>
<td>NP)</td>
<td>NP)</td>
<td>NP</td>
</tr>
</tbody>
</table>
Categorial grammar

<table>
<thead>
<tr>
<th></th>
<th>\textit{Pat}</th>
<th>\textit{sent}</th>
<th>\textit{Lou}</th>
<th>a</th>
<th>\textit{letter}</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>Pat (\lambda \text{yzx}. \text{sent}(x,y,z))</td>
<td>\textit{sent}</td>
<td>Lou (\lambda f.Ax.f(x))</td>
<td>a (\lambda x. \text{letter}(x))</td>
<td>letter</td>
</tr>
<tr>
<td></td>
<td>NP ((S/NP)/NP)/NP</td>
<td></td>
<td>NP | NP/(S/NP)</td>
<td></td>
<td>S/NP</td>
</tr>
</tbody>
</table>
Parsing with a categorial grammar

\[
\begin{align*}
&\text{Pat} \quad \text{sent} \quad \text{Lou} \quad a \quad \text{letter} \\
&\lambda \text{lyzx.} \text{sent}(x,y,z) \quad \lambda f.\text{Ax.}f(x) \quad \lambda x.\text{letter}(x) \\
&\text{NP} \quad ((S\text{NP})/\text{NP})/\text{NP} \quad \text{NP} \quad \text{NP}/(S/\text{NP}) \quad S/\text{NP} \\
&\underline{Ax.\text{letter}(x)} \quad \text{NP}
\end{align*}
\]
Parsing with a categorial grammar

\[
\begin{array}{cccccc}
\text{Pat} & \text{sent} & \text{Lou} & \text{a} & \text{letter} \\
\lambda y z x . \text{sent}(x, y, z) & \lambda f. A x . f(x) & \lambda x . \text{letter}(x) \\
((S\backslash N P)/N P)/N P & N P/(S\backslash N P) & S/ N P \\
\lambda z x . \text{sent}(x, \text{Lou}, z) & \text{Ax.letter}(x) & N P \\
(S\backslash N P)/N P & \\
\end{array}
\]
Parsing with a categorial grammar

<table>
<thead>
<tr>
<th>Pat</th>
<th>sent</th>
<th>Lou</th>
<th>a</th>
<th>letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pat</td>
<td>$\lambda yzx.\text{sent}(x,y,z)$</td>
<td>Lou</td>
<td>$\lambda f.Ax.f(x)$</td>
<td>$\lambda x.\text{letter}(x)$</td>
</tr>
<tr>
<td>NP</td>
<td>$((S\backslash NP)/NP)/NP$</td>
<td>NP</td>
<td>$NP/(S/\text{NP})$</td>
<td>S/NP</td>
</tr>
</tbody>
</table>

$\lambda zx.\text{sent}(x,\text{Lou},z)$

$(S\backslash NP)/NP$

$\lambda x.\text{sent}(x,\text{Lou},Ax.\text{letter}(x))$ S/NP
Parsing with a categorial grammar

\[
\begin{align*}
\text{Pat} & \quad \text{sent} \quad \text{Lou} \quad \text{a} \quad \text{letter} \\
\lambda y z x. \text{sent}(x,y,z) & \quad \lambda f. A x. f(x) \quad \lambda x. \text{letter}(x) \\
((S\NP)/\NP)/\NP & \quad \NP/(S/\NP) \quad S/\NP \\
\text{NP} & \quad \NP \\
\text{NP} & \quad \text{NP} \\
\lambda z x. \text{sent}(x,\text{Lou},z) & \quad \text{Ax. letter}(x) \\
(S\NP)/\NP & \quad \NP \\
\lambda x. \text{sent}(x,\text{Lou},\text{Ax. letter}(x)) & \quad S\NP \\
\text{sent}(\text{Pat},\text{Lou},\text{Ax. letter}(x)) & \quad S
\end{align*}
\]
Semantics → Synax!

Pat sent Lou a letter

___________________ ____________

Pat sent Lou a letter
Key Idea

Types in logic correspond to grammatical categories in language.
Problem 1

Each of the three girls has a platypus.

Each of the three girls climbed the mountain.

\[\forall x. \text{girl}(x) \rightarrow \exists y. \text{platypus}(y) \land \text{has}(x, y) \]

\[\exists y. \text{mountain}(y) \land \forall x. \text{girl}(x) \rightarrow \text{climbed}(x, y) \]
Problem 2

There are 128 cities in South Carolina

<table>
<thead>
<tr>
<th>name</th>
<th>type</th>
<th>coastal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbia</td>
<td>city</td>
<td>no</td>
</tr>
<tr>
<td>Cooper</td>
<td>river</td>
<td>yes</td>
</tr>
<tr>
<td>Charleston</td>
<td>city</td>
<td>yes</td>
</tr>
</tbody>
</table>
Problem 2

There are 128 cities in South Carolina

\[
\text{same}(128, \\
\text{count } x. \text{ city}(x) \land \\
\text{in}(x, \text{SouthCarolina})
\]
Barack Obama was the 44th President of the United States. Obama was born on August 4 in Honolulu, Hawaii. In late August 1961, Obama's mother moved with him to the University of Washington in Seattle for a year…

Is Barack Obama from the United States?
Barack Obama was the 44th President of the United States. Obama was born on August 4 in Honolulu, Hawaii. In late August 1961, Obama's mother moved with him to the University of Washington in Seattle for a year. Is Barack Obama from the United States? Yes.
Problem 3

Barack Obama was the 44th President of the United States. Obama was born on August 4 in Honolulu, Hawaii.

\[
\text{born}(\text{Obama, Hawaii, August 4})
\]

\[
\text{born}(x, y, z) \rightarrow \text{from}(x, y)
\]

\[
\text{from}(x, y) \land \text{in}(y, z) \rightarrow \text{from}(x, z)
\]

\[
\text{in}(\text{Hawaii, United States})
\]

Is Barack Obama from the United States?

Yes?
The meaning of a sentence is the set of possible worlds it picks out.
Key idea

Collections of possible worlds can be compactly represented with logical forms.
KEY IDEA

Pieces of logical forms correspond to pieces of language
Key Idea

Types in logic correspond to grammatical categories in language.
BONUS ROUND
What’s missing?
Q: How do you like my cooking?
Q: How do you like my cooking?
A: It’s extremely interesting.
Q: How do you like my cooking?
A: It’s extremely interesting.

Q: Do you know what time it is?
Q: How do you like my cooking?
A: It’s extremely interesting.

Q: Do you know what time it is?
A: Yes, I do.
Sal might have seen a unicorn.

Pat thinks Sal saw a unicorn.

Pat wants to find a unicorn.
KEY IDEA

Not all meaning is literal!
BONUS ROUND

Historical Notes
ling121: “Logical Semantics”

Ted Briscoe’s lecture notes:
https://www.cl.cam.ac.uk/teaching/1011/L107/semantics.pdf

Mark Steedman, “The Syntactic Process”