Language Model

- Vocabulary \mathcal{V} is a finite set of discrete symbols (e.g., words, characters); $\mathcal{V} = |\mathcal{V}|$

- \mathcal{V}^+ is the infinite set of sequences of symbols from \mathcal{V}; each sequence ends with STOP

- $x \in \mathcal{V}^+$
Language Model

\[P(w) = P(w_1, \ldots, w_n) \]

\[P(\text{“Call me Ishmael”}) = P(w_1 = \text{“call”}, w_2 = \text{“me”}, w_3 = \text{“Ishmael”}) \times P(\text{STOP}) \]

\[\sum_{w \in V^+} P(w) = 1 \]

\[0 \leq P(w) \leq 1 \]

over all sequence lengths!
Language Model

• Language models provide us with a way to quantify the likelihood of sequence — i.e., plausible sentences.
• to see great Pompey passe the streets of Rome:
• to see great Pompey passe the streets of Rome:

To see great Pompey passe the streets of Rome:
And when you saw his Chariot but appeare,
Have you not made an Universal shout,
That Tyber trembled vnderneath her bankes
To heare the replication of your sounds,
Made in her Concaue Shores?
Machine translation

- Fidelity (to source text)
- Fluency (of the translation)
natural language processing
natural language understanding
natural language processing with python
natural language generation
Speech Recognition

- 'Scuse me while I kiss the sky.
- 'Scuse me while I kiss this guy.
- 'Scuse me while I kiss this fly.
- 'Scuse me while my biscuits fry.
Dialogue generation

<table>
<thead>
<tr>
<th>Baseline mutual information model (Li et al. 2015)</th>
<th>Proposed reinforcement learning model</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Where are you going? (1)</td>
<td>A: Where are you going? (1)</td>
</tr>
<tr>
<td>B: I’m going to the restroom. (2)</td>
<td>B: I’m going to the police station. (2)</td>
</tr>
<tr>
<td>A: See you later. (3)</td>
<td>A: I’ll come with you. (3)</td>
</tr>
<tr>
<td>B: See you later. (4)</td>
<td>B: No, no, no, no, you’re not going anywhere. (4)</td>
</tr>
<tr>
<td>A: See you later. (5)</td>
<td>A: Why? (5)</td>
</tr>
<tr>
<td>B: See you later. (6)</td>
<td>B: I need you to stay here. (6)</td>
</tr>
<tr>
<td>...</td>
<td>A: I don’t know what you are talking about. (7)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>A: how old are you? (1)</td>
<td>A: How old are you? (1)</td>
</tr>
<tr>
<td>B: I’m 16. (2)</td>
<td>B: I’m 16. Why are you asking? (2)</td>
</tr>
<tr>
<td>A: 16? (3)</td>
<td>A I thought you were 12. (3)</td>
</tr>
<tr>
<td>B: I don’t know what you are talking about. (4)</td>
<td>B: What made you think so? (4)</td>
</tr>
<tr>
<td>A: You don’t know what you are saying. (5)</td>
<td>A: I don’t know what you are talking about. (5)</td>
</tr>
<tr>
<td>B: I don’t know what you are talking about. (6)</td>
<td>B: You don’t know what you are saying. (6)</td>
</tr>
<tr>
<td>A: You don’t know what you are saying. (7)</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Li et al. (2016), "Deep Reinforcement Learning for Dialogue Generation" (EMNLP)
Information theoretic view

“One morning I shot an elephant in my pajamas”

encode(Y) → decode(encode(Y))

Shannon 1948
Noisy Channel

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASR</td>
<td>speech signal</td>
<td>transcription</td>
</tr>
<tr>
<td>MT</td>
<td>target text</td>
<td>source text</td>
</tr>
<tr>
<td>OCR</td>
<td>pixel densities</td>
<td>transcription</td>
</tr>
</tbody>
</table>

\[
P(Y \mid X) \propto \underbrace{P(X \mid Y)}_{\text{channel model}} \underbrace{P(Y)}_{\text{source model}}
\]
Language Model

• Language modeling is the task of estimating $P(w)$

• Why is this hard?

$P(\text{“It was the best of times, it was the worst of times”})$
Chain rule (of probability)

\[
P(x_1, x_2, x_3, x_4, x_5) = P(x_1) \\
\times P(x_2 \mid x_1) \\
\times P(x_3 \mid x_1, x_2) \\
\times P(x_4 \mid x_1, x_2, x_3) \\
\times P(x_5 \mid x_1, x_2, x_3, x_4)
\]
Chain rule (of probability)

P(“It was the best of times, it was the worst of times”)
Chain rule (of probability)

\[P(\text{“It”}) \]

\[P(\text{“was”} \mid \text{“It”}) \]

\[P(w_1) \]

\[P(w_2 \mid w_1) \]

\[P(w_3 \mid w_1, w_2) \]

\[P(w_4 \mid w_1, w_2, w_3) \]

\[P(w_n \mid w_1, \ldots, w_{n-1}) \]

\[P(\text{“times”} \mid \text{“It was the best of times, it was the worst of”}) \]
Markov assumption

first-order

\[P(x_i \mid x_1, \ldots x_{i-1}) \approx P(x_i \mid x_{i-1}) \]

second-order

\[P(x_i \mid x_1, \ldots x_{i-1}) \approx P(x_i \mid x_{i-2}, x_{i-1}) \]
Markov assumption

\[
\prod_{i}^{n} P(w_i | w_{i-1}) \times P(\text{STOP} | w_n)
\]

\[
\prod_{i}^{n} P(w_i | w_{i-2}, w_{i-1}) \times P(\text{STOP} | w_{n-1}, w_n)
\]
“It was the best of times, it was the worst of times”

\[P(\text{It} \mid \text{START}_1, \text{START}_2) \]

\[P(\text{was} \mid \text{START}_2, \text{It}) \]

\[P(\text{the} \mid \text{It}, \text{was}) \]

\[\ldots \]

\[P(\text{times} \mid \text{worst}, \text{of}) \]

\[P(\text{STOP} \mid \text{of}, \text{times}) \]
Estimation

Unigram

\[
\prod_{i} P(w_i) \times P(\text{STOP})
\]

\[
\frac{c(w_i)}{N}
\]

Bigram

\[
\prod_{i} P(w_i \mid w_{i-1}) \times P(\text{STOP} \mid w_n)
\]

\[
\frac{c(w_{i-1}, w_i)}{c(w_{i-1})}
\]

Trigram

\[
\prod_{i} P(w_i \mid w_{i-2}, w_{i-1}) \times P(\text{STOP} \mid w_{n-1}, w_n)
\]

\[
\frac{c(w_{i-2}, w_{i-1}, w_i)}{c(w_{i-2}, w_{i-1})}
\]

Maximum likelihood estimate

What we learn in estimating language models is $P(\text{word} \mid \text{context})$, where context — at least here — is the previous $n-1$ words (for n-gram of order n).

We have one multinomial over the vocabulary (including \textit{STOP}) for each context.
As we sample, the words we generate form the new context we condition on.

<table>
<thead>
<tr>
<th>context1</th>
<th>context2</th>
<th>generated word</th>
</tr>
</thead>
<tbody>
<tr>
<td>START</td>
<td>START</td>
<td>The</td>
</tr>
<tr>
<td>START</td>
<td>The</td>
<td>dog</td>
</tr>
<tr>
<td>The</td>
<td>dog</td>
<td>walked</td>
</tr>
<tr>
<td>dog</td>
<td>walked</td>
<td>in</td>
</tr>
</tbody>
</table>
Aside: sampling?
Sampling from a Multinomial

Probability mass function (PMF)

$P(z = x)$ exactly
Sampling from a Multinomial

Cumulative density function (CDF)

$P(z \leq x)$
Sampling from a Multinomial

Sample p uniformly in $[0,1]$.

Find the point $\text{CDF}^{-1}(p)$.

$p=.78$
Sampling from a Multinomial

Sample p uniformly in $[0,1]$.

Find the point $CDF^{-1}(p)$

$p = 0.06$
Sampling from a Multinomial

Sample \(p \) uniformly in \([0,1]\)

Find the point \(\text{CDF}^{-1}(p) \)
Unigram model

- the around, she They I blue talking “Don’t to and little come of

- on fallen used there. young people to Lázaro

- of the

- the of of never that ordered don't avoided to complaining.

- words do had men flung killed gift the one of but thing seen I plate Bradley was by small Kingmaker.
Bigram Model

- “What the way to feel where we’re all those ancients called me one of the Council member, and smelled Tales of like a Korps peaks.”

- Tuna battle which sold or a monocle, I planned to help and distinctly.

- “I lay in the canoe ”

- She started to be able to the blundering collapsed.

- “Fine.”
Trigram Model

- “I’ll worry about it.”

- Avenue Great-Grandfather Edgeworth hasn’t gotten there.

- “If you know what. It was a photograph of seventeenth-century flourishin’ To their right hands to the fish who would not care at all. Looking at the clock, ticking away like electronic warnings about wonderfully SAT ON FIFTH

- Democratic Convention in rags soaked and my past life, I managed to wring your neck a boss won’t so David Pritchet giggled.

- He humped an argument but her bare He stood next to Larry, these days it will have no trouble Jay Grayer continued to peer around the Germans weren’t going to faint in the
4gram Model

• Our visitor in an idiot sister shall be blotted out in bars and flirting with curly black hair right marble, wallpapered on screen credit.”

• You are much instant coffee ranges of hills.

• Madison might be stored here and tell everyone about was tight in her pained face was an old enemy, trading-posts of the outdoors watching Anyog extended On my lips moved feebly.

• said.

• “I’m in my mind, threw dirt in an inch,’ the Director.
The best evaluation metrics are **external** — how does a better language model influence the application you care about?

- Speech recognition (word error rate), machine translation (BLEU score), topic models (sensemaking)
Evaluation

• A good language model should judge unseen real language to have high probability

• Perplexity = inverse probability of test data, averaged by word.

• To be reliable, the test data must be truly unseen (including knowledge of its vocabulary).

\[
\text{perplexity} = \sqrt{\frac{1}{N} \frac{1}{P(w_1, \ldots, w_n)}}
\]
Experiment design

<table>
<thead>
<tr>
<th></th>
<th>training</th>
<th>development</th>
<th>testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>80%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>purpose</td>
<td>training models</td>
<td>model selection; hyperparameter tuning</td>
<td>evaluation; never look at it until the very end</td>
</tr>
</tbody>
</table>
Evaluation

\[
\log P(w_1, \ldots, w_n) = \sum_{i=1}^{N} \log P(w_i)
\]

\[
\frac{1}{N} \sum_{i=1}^{N} \log P(w_i)
\]

perplexity = \[\exp \left(-\frac{1}{N} \sum_{i=1}^{N} \log P(w_i) \right)\]
Perplexity

\[\exp \left(-\frac{1}{N} \sum_{i}^{N} \log P(w_i \mid w_{i-2}, w_{i-1}) \right) \]

trigram model
(second-order markov)
Perplexity

<table>
<thead>
<tr>
<th>Model</th>
<th>Unigram</th>
<th>Bigram</th>
<th>Trigram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perplexity</td>
<td>962</td>
<td>170</td>
<td>109</td>
</tr>
</tbody>
</table>

SLP3 4.3
Smoothing

• When estimating a language model, we’re relying on the data we’ve observed in a training corpus.

• Training data is a small (and biased) sample of the creativity of language.
Data sparsity

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>5</td>
<td>827</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>want</td>
<td>2</td>
<td>0</td>
<td>608</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>686</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>211</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>16</td>
<td>2</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>chinese</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>82</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>food</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lunch</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spend</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 4.1 Bigram counts for eight of the words (out of $V = 1446$) in the Berkeley Restaurant Project corpus of 9332 sentences. Zero counts are in gray.
As in Naive Bayes, $P(w_i) = 0$ causes $P(w) = 0$. (Perplexity?)
Smoothing in NB

• One solution: add a little probability mass to every element.

maximum likelihood estimate

\[P(x_i \mid y) = \frac{n_{i,y}}{n_y} \]

smoothed estimates

\[P(x_i \mid y) = \frac{n_{i,y} + \alpha}{n_y + V\alpha} \]

same \(\alpha \) for all \(x_i \)

\[P(x_i \mid y) = \frac{n_{i,y} + \alpha_j}{n_y + \sum_{j=1}^{V} \alpha_j} \]

possibly different \(\alpha \) for each \(x_i \)

\(n_{i,y} = \text{count of word } i \text{ in class } y \)
\(n_y = \text{number of words in } y \)
\(V = \text{size of vocabulary} \)
Additive smoothing

\[P(w_i) = \frac{c(w_i) + \alpha}{N + V\alpha} \]

Laplace smoothing:
\[\alpha = 1 \]

\[P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + \alpha}{c(w_{i-1}) + V\alpha} \]
Smoothing

MLE

Smoothing is the re-allocation of probability mass

smoothing with $\alpha = 1$
Smoothing

• How can best re-allocate probability mass?

Interpolation

• As ngram order rises, we have the potential for higher precision but also higher variability in our estimates.

• A linear interpolation of any two language models p and q (with $\lambda \in [0,1]$) is also a valid language model.

$$\lambda p + (1 - \lambda)q$$

$p = \text{the web}$
$q = \text{political speeches}$
Interpolation

• We can use this fact to make higher-order language models more robust.

\[
P(w_i \mid w_{i-2}, w_{i-1}) = \lambda_1 P(w_i \mid w_{i-2}, w_{i-1}) \\
+ \lambda_2 P(w_i \mid w_{i-1}) \\
+ \lambda_3 P(w_i)
\]

\[
\lambda_1 + \lambda_2 + \lambda_3 = 1
\]
Interpolation

• How do we pick the best values of λ?

 • Grid search over development corpus

 • Expectation-Maximization algorithm (treat as missing parameters to be estimated to maximize the probability of the data we see).
Kneser-Ney smoothing

• Intuition: When backing off to a lower-order ngram, maybe the overall ngram frequency is not our best guess.

 I can’t see without my reading ___________

 \[P(“Francisco”) > P(“glasses”) \]

• *Francisco* is more frequent, but shows up in fewer unique bigrams (“San Francisco”) — so we shouldn’t expect it in new contexts; *glasses*, however, does show up in many different bigrams
Kneser-Ney smoothing

- Intuition: estimate how likely a word is to show up in a new continuation?

- How many different bigram types does a word type w show up in (normalized by all bigram types that are seen)

$$\frac{|v \in \mathcal{V} : c(v, w) > 0|}{|v', w' \in \mathcal{V} : c(v', w') > 0|}$$
\[P_{KN}(v) = \frac{|v \in \mathcal{V} : c(v, w) > 0|}{|v', w' \in \mathcal{V} : c(v', w') > 0|} \]

\(P_{KN}(v) \) is the continuation probability for the unigram \(v \) (the frequency with which it appears as the suffix in distinct bigram types)
Kneser-Ney smoothing

$$\frac{\max\{c(w_{i-1}, w_i) - d, 0\}}{c(w_{i-1})} + \lambda(w_{i-1})P_{KN}(w_i)$$

- discounted mass
- discounted bigram probability
- continuation probability
Kneser-Ney smoothing

\[
\frac{\max\{c(w_{i-1}, w_i) - d, 0\}}{c(w_{i-1})}
\]

d is a discount factor (usually between 0 and 1 — how much we discount the observed counts by)
Kneser-Ney smoothing

\[\lambda(w_{i-1}) = \frac{d \times |v \in \mathcal{V} : c(w_{i-1}v) > 0|}{c(w_{i-1})} \]

\(\lambda \) here captures the discounted mass we’re reallocating from prefix \(w_{i-1} \)
Kneser-Ney smoothing

<table>
<thead>
<tr>
<th>wi-1</th>
<th>wi</th>
<th>C(wi-1, wi)</th>
<th>C(wi-1, wi) - d(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>hook</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>red</td>
<td>car</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>red</td>
<td>watch</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>sum</td>
<td></td>
<td>15</td>
<td>12</td>
</tr>
</tbody>
</table>

\[\lambda(\text{red}) = 1 \times \frac{3}{15} \]

12/15 of the probability mass stays with the original counts; 3/15 is reallocated
$$P_{KN}(v) = \frac{|v \in \mathcal{V} : c(v, w) > 0|}{|v', w' \in \mathcal{V} : c(v', w') > 0|}$$

\[\max\left\{\frac{c(w_{i-1}, w_i) - d, 0}{c(w_{i-1})}\right\} + \lambda(w_{i-1})P_{KN}(w_i)\]
we’ll move all of the mass we subtracted here over to this side

\[
\frac{\max\{c(w_{i-1}, w_i) - d, 0\}}{c(w_{i-1})} + \lambda(w_{i-1})P_{KN}(w_i)
\]

and distribute it according to the continuation probability
“Stupid backoff”

\[
S(w_i \mid w_{i-k+1}, \ldots, w_{i-1}) = \begin{cases}
\frac{c(w_{i-k+1}, \ldots, w_i)}{c(w_{i-k+1}, \ldots, w_{i-1})} & \text{if full sequence observed} \\
\lambda S(w_i \mid w_{i-k+2}, \ldots, w_{i-1}) & \text{otherwise}
\end{cases}
\]

No discounting here, just back off to lower order ngram if the higher order is not observed.

Cheap to calculate; works almost as well as KN when there is a lot of data.

You should feel comfortable:

• Calculate the probability of a sentence given a trained model
• Estimating (e.g., trigram) language model
• Evaluating perplexity on held-out data
• Sampling a sentence from a trained model
Tools

- SRILM
 http://www.speech.sri.com/projects/srilm/

- KenLM
 https://kheafield.com/code/kenlm/

- Berkeley LM
 https://code.google.com/archive/p/berkeleylm/