Natural Language Processing

Info 159/259
Lecture 4: Text classification 3 (Sept 5, 2017)

David Bamman, UC Berkeley
History of NLP

• Foundational insights, 1940s/1950s
• Two camps (symbolic/stochastic), 1957-1970
• Four paradigms (stochastic, logic-based, NLU, discourse modeling), 1970-1983
• Empiricism and FSM (1983-1993)
• Field comes together (1994-1999)
• Machine learning (2000–today)
• Neural networks (~2014–today)

J&M 2008, ch 1
Neural networks in NLP

• Language modeling [Mikolov et al. 2010]

• Text classification [Kim 2014; Iyyer et al. 2015]

• Syntactic parsing [Chen and Manning 2014, Dyer et al. 2015, Andor et al. 2016]

• CCG super tagging [Lewis and Steedman 2014]

• Dialogue agents [Sordoni et al. 2015, Vinyals and Lee 2015, Ji et al. 2016]

• (for overview, see Goldberg 2017, 1.3.1)
Neural networks

• Discrete, high-dimensional representation of inputs (one-hot vectors) -> low-dimensional “distributed” representations.

• Non-linear interactions of input features

• Multiple “layers” to capture hierarchical structure
Neural network libraries

TensorFlow

Theano

Keras

dy-net
Logistic regression

\[
\hat{y} = \frac{1}{1 + \exp\left(-\sum_{i=1}^{F} x_i \beta_i\right)}
\]

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>\beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>not</td>
<td>1</td>
<td>-0.5</td>
</tr>
<tr>
<td>bad</td>
<td>1</td>
<td>-1.7</td>
</tr>
<tr>
<td>movie</td>
<td>0</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Calculate the derivative of some loss function with respect to parameters we can change, update accordingly to make predictions on training data a little less wrong next time.
Logistic regression

\[\hat{y} = \frac{1}{1 + \exp \left(- \sum_{i=1}^{F} x_i \beta_i \right)} \]

<table>
<thead>
<tr>
<th>x</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>not</td>
<td>1</td>
</tr>
<tr>
<td>bad</td>
<td>1</td>
</tr>
<tr>
<td>movie</td>
<td>0</td>
</tr>
</tbody>
</table>
Neural networks

• Two core ideas:
 • Non-linear activation functions
 • Multiple layers
For simplicity, we’re leaving out the bias term, but assume most layers have them as well.
not
bad
movie
the hidden nodes are completely determined by the input and weights

\[h_j = f \left(\sum_{i=1}^{F} x_i W_{i,j} \right) \]
\[h_1 = f \left(\sum_{i=1}^{F} x_i W_{i,1} \right) \]
Activation functions

\[\sigma(z) = \frac{1}{1 + \exp(-z)} \]
Logistic regression

\[\hat{y} = \sigma \left(\sum_{i=1}^{F} x_i \beta_i \right) \]

\[\hat{y} = \frac{1}{1 + \exp \left(- \sum_{i=1}^{F} x_i \beta_i \right)} \]

We can think about logistic regression as a neural network with no hidden layers.
Activation functions

\[\text{tanh}(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)} \]
Activation functions

\[
\text{rectifier}(z) = \max(0, z)
\]
\[h_1 = \sigma \left(\sum_{i=1}^{F} x_i W_{i,1} \right) \]
\[h_2 = \sigma \left(\sum_{i=1}^{F} x_i W_{i,2} \right) \]
\[\hat{y} = \sigma [V_1 h_1 + V_2 h_2] \]
we can express \(y \) as a function only of the input \(x \) and the weights \(W \) and \(V \)

\[
\hat{y} = \sigma \left[V_1 \left(\sigma \left(\sum_{i=1}^{F} x_i W_{i,1} \right) \right) + V_2 \left(\sigma \left(\sum_{i=1}^{F} x_i W_{i,2} \right) \right) \right]
\]

\(W \) and \(V \)
Backpropagation: Given training samples of \(<x, y>\) pairs, we can use stochastic gradient descent to find the values of \(W\) and \(V\) that minimize the loss.

This is hairy, but differentiable
Neural networks are a series of functions chained together.

The loss is another function chained on top.

\[
xW \rightarrow \sigma(xW) \rightarrow \sigma(xW)V \rightarrow \sigma(\sigma(xW)V)
\]

\[
\log(\sigma(\sigma(xW)V))
\]
Chain rule

\[\frac{\partial}{\partial V} \log (\sigma (\sigma (xW) V)) = \frac{\partial \log (\sigma (\sigma (xW) V))}{\partial \sigma (\sigma (xW) V)} \frac{\partial \sigma (\sigma (xW) V)}{\partial \sigma (xW) V} \frac{\partial \sigma (xW) V}{\partial V} \]

\[= \frac{\partial \log (\sigma (hV))}{\partial \sigma (hV)} \frac{\partial \sigma (hV)}{\partial hV} \frac{\partial hV}{\partial V} \]

Let’s take the likelihood for a single training example with label \(y = 1 \); we want this value to be as high as possible.
Chain rule

\[
\frac{\partial \log (\sigma (hV))}{\partial \sigma (hV)} \cdot \frac{\partial \sigma (hV)}{\partial hV} \cdot \frac{\partial hV}{\partial V} = \left(\frac{1}{\sigma (hV)} \right) \cdot \sigma (hV) \cdot (1 - \sigma (hV)) \cdot h = (1 - \sigma (hV))h = (1 - \hat{y})h
\]
Neural networks

• Tremendous flexibility on design choices (exchange feature engineering for model engineering)

• Articulate model structure and use the chain rule to derive parameter updates.
Neural network structures

Output one real value
Neural network structures

Multiclass: output 3 values, only one = 1 in training data
Neural network structures

output 3 values, several = 1 in training data
Regularization

- Increasing the number of parameters = increasing the possibility for overfitting to training data
Regularization

- L2 regularization: penalize W and V for being too large

- Dropout: when training on a $<x,y>$ pair, randomly remove some node and weights.

- Early stopping: Stop backpropagation before the training error is too small.
Deeper networks

\[W_1 \quad W_2 \quad V \]

\[x_1 \quad x_2 \quad x_3 \]

\[h_1 \quad h_2 \quad h_2 \quad h_2 \]

\[y \]
Densely connected layer

\[h = \sigma(xW) \]
Convolutional networks

- With convolution networks, the same operation is (i.e., the same set of parameters) is applied to different regions of the input
2D Convolution

1D Convolution

convolution K

\[
x_{1:4}K = \text{moving average}
\]
Convolutional networks

\[h_1 = f(I, \text{hated, it}) \]

\[h_2 = f(\text{it, I, really}) \]

\[h_3 = f(\text{really, hated, it}) \]

\[h_1 = \sigma(x_1 W_1 + x_2 W_2 + x_3 W_3) \]

\[h_2 = \sigma(x_3 W_1 + x_4 W_2 + x_5 W_3) \]

\[h_3 = \sigma(x_5 W_1 + x_6 W_2 + x_7 W_3) \]
Indicator vector

- Every token is a V-dimensional vector (size of the vocab) with a single 1 identifying the word.

- We’ll get to distributed representations of words in on 9/19.

<table>
<thead>
<tr>
<th>vocab item</th>
<th>indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>aa</td>
<td>0</td>
</tr>
<tr>
<td>aal</td>
<td>0</td>
</tr>
<tr>
<td>aalii</td>
<td>0</td>
</tr>
<tr>
<td>aam</td>
<td>0</td>
</tr>
<tr>
<td>aardvark</td>
<td>1</td>
</tr>
<tr>
<td>aardwolf</td>
<td>0</td>
</tr>
<tr>
<td>aba</td>
<td>0</td>
</tr>
</tbody>
</table>
Convolutional networks

\[h_1 = \sigma(x_1W_1 + x_2W_2 + x_3W_3) \]
\[h_2 = \sigma(x_3W_1 + x_4W_2 + x_5W_3) \]
\[h_3 = \sigma(x_5W_1 + x_6W_2 + x_7W_3) \]
For indicator vectors, we’re just adding these numbers together

\[h_1 = \sigma(W_{1,x_1^id} + W_{2,x_2^id} + W_{3,x_3^id}) \]

(Where \(x_n^id \) specifies the location of the 1 in the vector — i.e., the vocabulary id)
Pooling

- Down-samples a layer by selecting a single point from some set
- Max-pooling selects the largest value
Convolutional networks

This defines one filter.

convolution max pooling
\begin{align*}
h_1 &= \sigma(x^\top W) \end{align*}
We can specify multiple filters; each filter is a separate set of parameters to be learned.

\[h_1 = \sigma(x^\top W) \in \mathbb{R}^4 \]
We can specify multiple filters; each filter is a separate set of parameters to be learned.

\[h_1 = \sigma(x^\top W) \in \mathbb{R}^4 \]
Convolutional networks

• With max pooling, we select a single number for each filter over all tokens

• (e.g., with 100 filters, the output of max pooling stage = 100-dimensional vector)

• If we specify multiple filters, we can also scope each filter over different window sizes
\[
tanh(x \circ W) \rightarrow \text{max} \rightarrow \sigma(hV)
\]
CNN as important ngram detector

Higher-order ngrams are much more informative than just unigrams (e.g., “i don’t like this movie” [“I”, “don’t”, “like”, “this”, “movie”])

We can think about a CNN as providing a mechanism for detecting important (sequential) ngrams without having the burden of creating them as unique features

<table>
<thead>
<tr>
<th>unique types</th>
<th>50921</th>
</tr>
</thead>
<tbody>
<tr>
<td>unigrams</td>
<td>50921</td>
</tr>
<tr>
<td>bigrams</td>
<td>451,220</td>
</tr>
<tr>
<td>trigrams</td>
<td>910,694</td>
</tr>
<tr>
<td>4-grams</td>
<td>1,074,921</td>
</tr>
</tbody>
</table>

Unique ngrams (1-4) in Cornell movie review dataset
CNN Backprop (V)

\[L(W, V) = y \log o + (1 - y) \log(1 - o) \]

\[\frac{\partial L(W, V)}{\partial V} = \frac{\partial A}{\partial V} + \frac{\partial B}{V} = \frac{\partial A}{V} + \frac{\partial B}{V} \]
\[
\frac{\partial A}{\partial V} = \frac{\partial y \log(\sigma(Vh))}{\partial \sigma(Vh)} \times \frac{\partial \sigma(Vh)}{\partial Vh} \times \frac{\partial Vh}{\partial V}
\]
\[
= \frac{y}{\sigma(Vh)} \times \sigma(Vh)(1 - \sigma(Vh)) \times h
\]
\[
= y(1 - \sigma(Vh))h
\]
\[
\frac{\partial B}{\partial V} = \frac{\partial (1 - y) \log (1 - \sigma (Vh))}{\partial (1 - \sigma (Vh))} \times \frac{\partial (1 - \sigma (Vh))}{\partial Vh} \times \frac{\partial Vh}{\partial V}
\]

\[
= \frac{1 - y}{1 - \sigma (Vh)} \times -\sigma (Vh) (1 - \sigma (Vh)) \times h
\]

\[
= -(1 - y) (\sigma (Vh)) h
\]
CNN Backprop (V)

\[
\frac{\partial A + B}{V} = \frac{\partial A}{V} + \frac{\partial B}{V} \\
= y (1 - \sigma (Vh)) h - (1 - y) (\sigma (Vh)) h \\
= (y - \sigma (Vh)) h
\]
• You’ll derive and implement updates for the rest of the parameters in homework 2
Generative vs. Discriminative models

• Generative models specify a joint distribution over the labels and the data. With this you could generate new data

\[P(x, y) = P(y) \cdot P(x \mid y) \]

• Discriminative models specify the conditional distribution of the label \(y \) given the data \(x \). These models focus on how to discriminate between the classes

\[P(y \mid x) \]
259 project proposal
due 9/26

• Final project involving 1 or 2 students involving natural language processing -- either focusing on core NLP methods or using NLP in support of an empirical research question.

• Proposal (2 pages):
 • outline the work you’re going to undertake
 • motivate its rationale as an interesting question worth asking
 • assess its potential to contribute new knowledge by situating it within related literature in the scientific community. (cite 5 relevant sources)
 • who is the team and what are each of your responsibilities (everyone gets the same grade)
Thursday

- Read Hovy and Spruit (2016) and come prepared to discuss!