NLP is interdisciplinary

• Artificial intelligence

• Machine learning (ca. 2000—today); statistical models, neural networks

• Linguistics (representation of language)

• Social sciences/humanities (models of language at use in culture/society)
NLP = processing language with computers
processing as “understanding”
Turing test

Distinguishing human vs. computer only through written language

Turing 1950
Dave Bowman: Open the pod bay doors, HAL
HAL: I’m sorry Dave. I’m afraid I can’t do that

<table>
<thead>
<tr>
<th>Agent</th>
<th>Movie</th>
<th>Complex human emotion mediated through language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hal</td>
<td>2001</td>
<td>Mission execution</td>
</tr>
<tr>
<td>Samantha</td>
<td>Her</td>
<td>Love</td>
</tr>
<tr>
<td>David</td>
<td>Prometheus</td>
<td>Creativity</td>
</tr>
</tbody>
</table>
Where we are now
Where we are now
Where we are now
Baseline mutual information model (Li et al. 2015)

A: Where are you going? (1)
B: I’m going to the restroom. (2)
A: See you later. (3)
B: See you later. (4)
A: See you later. (5)
B: See you later. (6)
...
...
A: how old are you? (1)
B: I’m 16. (2)
A: 16? (3)
B: I don’t know what you are talking about. (4)
A: You don’t know what you are saying. (5)
B: I don’t know what you are talking about. (6)
A: You don’t know what you are saying. (7)
...

What makes language hard?

• Language is a complex social process

• Tremendous ambiguity at every level of representation

• Modeling it is Al-complete (requires first solving general AI)
What makes language hard?

- Speech acts ("can you pass the salt?)
 [Austin 1962, Searle 1969]

- Conversational implicature ("The opera singer was amazing; she sang all of the notes").
 [Grice 1975]

- Shared knowledge ("Clinton is running for election")

- Variation/Indexicality ("This homework is wicked hard")
 [Labov 1966, Eckert 2008]
Ambiguity

“One morning I shot an elephant in my pajamas”
Ambiguity

“One morning I shot an elephant in my pajamas”

Animal Crackers
Ambiguity

“One morning I shot an elephant in my pajamas”
Ambiguity

verb noun

“One morning I shot an elephant in my pajamas”
I made her duck

- I cooked waterfowl for her
- I cooked waterfowl belonging to her
- I created the (plaster?) duck she owns
- I caused her to quickly lower her head or body
- ...
processing as representation

• NLP generally involves representing language for some end, e.g.:
 • dialogue
 • translation
 • speech recognition
 • text analysis
Information theoretic view

"One morning I shot an elephant in my pajamas"

encode(X) → decode(encode(X))

Shannon 1948
Information theoretic view

When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.'

Weaver 1955
Rational speech act view

“One morning I shot an elephant in my pajamas”

Communication involves recursive reasoning: how can X choose words to maximize understanding by Y?

Frank and Goodman 2012
Pragmatic view

“One morning I shot an elephant in my pajamas”

Meaning is co-constructed by the interlocutors and the context of the utterance
Whorfian view

“One morning I shot an elephant in my pajamas”

Weak relativism: structure of language influences thought
Whorfian view

一天早上我穿着睡衣射了一只大象

Weak relativism: structure of language influences thought
Decoding

“One morning I shot an elephant in my pajamas”

representation

words
syntax
semantics
discourse

decode(encode(X))
discourse
semantics
syntax
morphology
words
• One morning I shot an elephant in my pajamas
• I didn’t shoot an elephant
• Imma let you finish but Beyoncé had one of the best videos of all time
• 一天早上我穿着睡衣射了一只大象
Parts of speech

noun verb noun noun

One morning I shot an elephant in my pajamas
Imma let you finish but Beyoncé had one of the best videos of all time
One morning I shot an elephant in my pajamas

Imma let you finish but Beyoncé had one of the best videos of all time
Sentiment analysis

"Unfortunately I already had this exact picture tattooed on my chest, but this shirt is very useful in colder weather."

[overlook1977]
What did Barack Obama teach?

Barack Hussein Obama II (born August 4, 1961) is the 44th and current President of the United States, and the first African American to hold the office. Born in Honolulu, Hawaii, Obama is a graduate of Columbia University and Harvard Law School, where he served as president of the *Harvard Law Review*. He was a community organizer in Chicago before earning his law degree. He worked as a civil rights attorney and taught constitutional law at the University of Chicago Law School between 1992 and 2004.
Inferring Character Types

Input: text describing plot of a movie or book.

Structure: NER, syntactic parsing + coreference

Luke watches as Vader kills Kenobi

Luke runs away

The soldiers shoot at him
NLP

- Machine translation
- Question answering
- Information extraction
- Conversational agents
- Summarization
NLP + X
Computational Social Science

- Inferring ideal points of politicians based on voting behavior, speeches
- Detecting the triggers of censorship in blogs/social media
- Inferring power differentials in language use

Link structure in political blogs
Adamic and Glance 2005
Computational Journalism

What do Journalists do with Documents?
Field Notes for Natural Language Processing Researchers

Jonathan Stray
Columbia Journalism School
jms2361@columbia.edu

• Robust import
• Robust analysis
• Search, not exploration

• Quantitative summaries
• Interactive methods
• Clarity and Accuracy
Computational Humanities

Ryan Heuser, Franco Moretti, Erik Steiner (2016), The Emotions of London

Richard Jean So and Hoyt Long (2015), “Literary Pattern Recognition”

Franco Moretti (2005), Graphs, Maps, Trees

Holst Katsma (2014), Loudness in the Novel

The graph shows the fraction of words about female characters written by women (black line) and written by men (red line) from 1820 to 2000. The data is based on the works of Ted Underwood and David Bamman (2016), "The Instability of Gender" (MLA); "The Gender Balance of Fiction" (2017).
Text-driven forecasting
Methods

- Finite state automata/transducers (tokenization, morphological analysis)
- Rule-based systems
Methods

• Probabilistic models

• Naive Bayes, Logistic regression, HMM, MEMM, CRF, language models

\[
P(Y = y | X = x) = \frac{P(Y = y)P(X = x | Y = y)}{\sum_y P(Y = y)P(X = x | Y = y)}
\]
Methods

- Dynamic programming (combining solutions to subproblems)

Viterbi algorithm, CKY
Methods

• Dense representations for features/labels (generally: inputs and outputs)

\[\text{vec} \left(a_{11} \in \mathbb{R}^d, a_{12} \in \mathbb{R}^d, \phi_p(x) \in \mathbb{R}^N \right) \rightarrow \text{vec} \left(d \times d \times N \right) \rightarrow \text{Feature vector} \in \mathbb{R}^{d^2N} \]

• Multiple, highly parameterized layers of (usually non-linear) interactions mediating the input/output (“deep neural networks”)

Sutskever et al (2014), “Sequence to Sequence Learning with Neural Networks”
Methods

- Latent variable models (specifying probabilistic structure between variables and inferring likely latent values)

Info 159/259

- This is a class about models.
 - You’ll learn and implement algorithms to solve NLP tasks efficiently and understand the fundamentals to innovate new methods.

- This is a class about the linguistic representation of text.
 - You’ll annotate texts for a variety of representations so you’ll understand the phenomena you’ll be modeling.
Prerequisites

• Strong programming skills
 • Translate pseudocode into code (Python)
 • Analysis of algorithms (big-O notation)
• Basic probability/statistics
• Calculus
function VITERBI(observations of len T, state-graph of len N) returns best-path

create a path probability matrix viterbi[N+2,T]

for each state s from 1 to N do ; initialization step
 viterbi[s,1] ← \(a_{0,s} \times b_s(o_1) \)
 backpointer[s,1] ← 0

for each time step \(t \) from 2 to T do ; recursion step
 for each state s from 1 to N do
 viterbi[s,t] ← \(\max_{s'=1}^{N} viterbi[s',t-1] \times a_{s',s} \times b_s(o_t) \)
 backpointer[s,t] ← \(\operatorname{argmax}_{s'=1}^{N} viterbi[s',t-1] \times a_{s',s} \)

viterbi[q_F,T] ← \(\max_{s=1}^{N} viterbi[s,T] \times a_{s,q_F} \) ; termination step

backpointer[q_F,T] ← \(\operatorname{argmax}_{s=1}^{N} viterbi[s,T] \times a_{s,q_F} \) ; termination step

return the backtrace path by following backpointers to states back in time from backpointer[q_F,T]
\[
\frac{dx^2}{dx} = 2x
\]
Grading

• Info 159:

 • Midterm (20%) + Final exam (30%)

 • Take-home homeworks and in-class short quizzes (drop 3 lowest scores).
Quizzes

• Cover any material in current reading for that day or any material in previous lectures.
Homeworks

• ~ Half annotation exercises (learn the universal dependency representation of syntax and annotate some text)

• ~ Half modeling/algorithm exercises (derive the backprop updates for a CNN and implement it).
Late submissions

• All homeworks are due on the date/time specified; late homeworks won’t be accepted after the deadline

• Note you can drop the lowest 3 scores on homeworks/quizzes; be judicious in how you manage that.
Grading

• Info 259:
 • Midterm (20%) + project (30%)
 • Take-home homeworks and in-class short quizzes (drop 3 lowest scores).
259 Project

• Semester-long project (involving 1 or 2 students) involving natural language processing -- either focusing on core NLP methods or using NLP in support of an empirical research question

• Project proposal/literature review
• Midterm report
• 8-page final report, workshop quality
• Poster presentation
ACL 2017 workshops

- CLPsych: Computational Linguistics and Clinical Psychology
- Workshop on NLP and Computational Social Science
- Repl4NLP: 2nd Workshop on Representation Learning for NLP
- LaTeCH-CLfL: Workshop on Computational Linguistics for Literature
- TextGraphs-11: Graph-based Methods for NLP
- ALW1: 1st Workshop on Abusive Language Online
- EventStory: Events and Stories in the News
Waitlisted

• Come to class, complete assignments
Next time

• Sentiment analysis and text classification

• Read SLP3 chapter 6 (on syllabus)

• DB office hours tomorrow 10am-noon (314 South Hall)

• TAs (office hours Friday 9/1 2:30-3:30pm):
 • Yiyi Chen
 • Sayan Sanyal