NLP is interdisciplinary

• Artificial intelligence

• Machine learning (ca. 2000—today); statistical models, neural networks

• Linguistics (representation of language)

• Social sciences/humanities (models of language at use in culture/society)
NLP = processing language with computers
processing as “understanding”
Turing test

Distinguishing human vs. computer only through written language

Turing 1950
Dave Bowman: Open the pod bay doors, HAL
HAL: I’m sorry Dave. I’m afraid I can’t do that

<table>
<thead>
<tr>
<th>Agent</th>
<th>Movie</th>
<th>Complex human emotion mediated through language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hal</td>
<td>2001</td>
<td>Mission execution</td>
</tr>
<tr>
<td>Samantha</td>
<td>Her</td>
<td>Love</td>
</tr>
<tr>
<td>David</td>
<td>Prometheus</td>
<td>Creativity</td>
</tr>
</tbody>
</table>
Where we are now
Where we are now
Where we are now

“My favorite fruit is mango.”

Oh.

“What's my favorite fruit?”

I can't read your mind, David.
Baseline mutual information model (Li et al. 2015)

A: Where are you going? (1)
B: I’m going to the restroom. (2)
A: See you later. (3)
B: See you later. (4)
A: See you later. (5)
B: See you later. (6)
...
...
A: how old are you? (1)
B: I’m 16. (2)
A: 16? (3)
B: I don’t know what you are talking about. (4)
A: You don’t know what you are saying. (5)
B: I don’t know what you are talking about. (6)
A: You don’t know what you are saying. (7)
...

Li et al. (2016), "Deep Reinforcement Learning for Dialogue Generation" (EMNLP)
What makes language hard?

• Language is a complex social process

• Tremendous ambiguity at every level of representation

• Modeling it is **AI-complete** (requires first solving general AI)
What makes language hard?

• Speech acts (“can you pass the salt?)
 [Austin 1962, Searle 1969]

• Conversational implicature (“The opera singer was amazing; she sang all of the notes”).
 [Grice 1975]

• Shared knowledge (“Warren is running for president”)
Elizabeth Warren
2020

Warren G. Harding
1920
What makes language hard?

- Speech acts ("can you pass the salt?")
 [Austin 1962, Searle 1969]

- Conversational implicature ("The opera singer was amazing; she sang all of the notes").
 [Grice 1975]

- Shared knowledge ("Warren is running for president")

- Variation/Indexicality ("This homework is wicked hard")
 [Labov 1966, Eckert 2008]
Ambiguity

“One morning I shot an elephant in my pajamas”
Ambiguity

“One morning I shot an elephant in my pajamas”

Animal Crackers
Ambiguity

“One morning I shot an elephant in my pajamas”
Ambiguity

verb noun

“One morning I shot an elephant in my pajamas”

Animal Crackers
I made her duck

[SLP2 ch. 1]

- I cooked waterfowl for her
- I cooked waterfowl belonging to her
- I created the (plaster?) duck she owns
- I caused her to quickly lower her head or body
- ...
processing as representation

• NLP generally involves representing language for some end, e.g.:
 • dialogue
 • translation
 • speech recognition
 • text analysis
Information theoretic view

“One morning I shot an elephant in my pajamas”

Shannon 1948
When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.'

Weaver 1955
Rational speech act view

“One morning I shot an elephant in my pajamas”

Communication involves recursive reasoning: how can X choose words to maximize understanding by Y?

Frank and Goodman 2012
Pragmatic view

“One morning I shot an elephant in my pajamas”

Meaning is co-constructed by the interlocutors and the context of the utterance.
Whorfian view

“One morning I shot an elephant in my pajamas”

Weak relativism: structure of language influences thought
Weak relativism: structure of language influences thought

Whorfian view

一天早上我穿着睡衣射了一只大象
Decoding

“One morning I shot an elephant in my pajamas”
• One morning I shot an elephant in my pajamas
• I didn’t shoot an elephant
• Imma let you finish but Beyoncé had one of the best videos of all time
• 一天早上我穿着睡衣射了一只大象
Parts of speech

noun verb noun noun

One morning I shot an elephant in my pajamas
Named entities

person

Imma let you finish but Beyoncé had one of the best videos of all time
One morning I shot an elephant in my pajamas
Sentiment analysis

"Unfortunately I already had this exact picture tattooed on my chest, but this shirt is very useful in colder weather."
[overlook1977]
Barack Hussein Obama II (born August 4, 1961) is an American attorney and politician who served as the 44th President of the United States from January 20, 2009, to January 20, 2017. A member of the Democratic Party, he was the first African American to serve as president. He was previously a United States Senator from Illinois and a member of the Illinois State Senate.

Obama was born in 1961 in Honolulu, Hawaii, two years after the territory was admitted to the Union as the 50th state. Raised largely in Hawaii, he also spent one year of his childhood in Washington state and four years in Indonesia. After graduating from Columbia University in 1983, he worked as a community organizer in Chicago. In 1988, he enrolled in Harvard Law School, where he was the first black president of the Harvard Law Review. After graduating, he became a civil rights attorney and a professor, teaching constitutional law; at the University of Chicago Law School from 1992 to 2004.
Inferring Character Types

Input: text describing plot of a movie or book.

Structure: NER, syntactic parsing + coreference

Luke watches as Vader kills Kenobi
Luke runs away
The soldiers shoot at him
NLP

• Machine translation
• Question answering
• Information extraction
• Conversational agents
• Summarization
NLP + X
Computational Social Science

- Inferring ideal points of politicians based on voting behavior, speeches
- Detecting the triggers of censorship in blogs/social media
- Inferring power differentials in language use

Link structure in political blogs
Adamic and Glance 2005
Computational Journalism

What do Journalists do with Documents?
Field Notes for Natural Language Processing Researchers

Jonathan Stray
Columbia Journalism School
jms2361@columbia.edu

- Robust import
- Robust analysis
- Search, not exploration
- Quantitative summaries
- Interactive methods
- Clarity and Accuracy
Computational Humanities

Ryan Heuser, Franco Moretti, Erik Steiner (2016), The Emotions of London

Richard Jean So and Hoyt Long (2015), “Literary Pattern Recognition”

Franco Moretti (2005), Graphs, Maps, Trees

Holst Katsma (2014), Loudness in the Novel

Text-driven forecasting
Methods

- Finite state automata/transducers (tokenization, morphological analysis)
- Rule-based systems
Methods

- Probabilistic models
- Naive Bayes, Logistic regression, HMM, MEMM, CRF, language models

\[P(Y = y | X = x) = \frac{P(Y = y)P(X = x | Y = y)}{\sum_y P(Y = y)P(X = x | Y = y)} \]
Methods

- Dynamic programming (combining solutions to subproblems)

Viterbi algorithm, CKY
Methods

- Dense representations for features/labels (generally: inputs and outputs)

 \[\text{vec} \left(\begin{array}{c} a_1 \\ a_2 \\ \phi_p(x) \end{array} \right) \rightarrow \text{vec} \left(\begin{array}{c} d \times d \times N \end{array} \right) \rightarrow \text{Feature vector} \in \mathbb{R}^{d \times N} \]

- Neural networks: multiple, highly parameterized layers of (usually non-linear) interactions mediating the input/output

 Sutskever et al (2014), “Sequence to Sequence Learning with Neural Networks”
Methods

- Latent variable models (specifying probabilistic structure between variables and inferring likely latent values)

Figure 1: Plate notation diagram of HIPTM.
Info 159/259

• This is a class about models.
 • You’ll learn and implement algorithms to solve NLP tasks efficiently and understand the fundamentals to innovate new methods.

• This is a class about the linguistic representation of text.
 • You’ll annotate texts for a variety of representations so you’ll understand the phenomena you’ll be modeling
Prerequisites

- Strong programming skills
 - Translate pseudocode into code (Python)
 - Analysis of algorithms (big-O notation)
- Basic probability/statistics
- Calculus
function VITERBI(observations of len T, state-graph of len N) **returns** best-path

create a path probability matrix $viterbi[N+2,T]$

for each state s from 1 to N do ; initialization step

\[viterbi[s,1] \leftarrow a_{0,s} \times b_s(o_1) \]

\[backpointer[s,1] \leftarrow 0 \]

for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

\[viterbi[s,t] \leftarrow \max_{s' = 1}^{N} viterbi[s',t - 1] \times a_{s',s} \times b_s(o_t) \]

\[backpointer[s,t] \leftarrow \arg\max_{s' = 1}^{N} viterbi[s',t - 1] \times a_{s',s} \]

\[viterbi[q_F,T] \leftarrow \max_{s = 1}^{N} viterbi[s,T] \times a_{s,q_F} \] ; termination step

\[backpointer[q_F,T] \leftarrow \arg\max_{s = 1}^{N} viterbi[s,T] \times a_{s,q_F} \] ; termination step

return the backtrace path by following backpointers to states back in time from $backpointer[q_F,T]$

Viterbi algorithm, SLP3 ch. 9
$$\frac{dx^2}{dx} = 2x$$
Grading

• Info 159:
 • 8 homeworks (50%)
 • Weekly quizzes (10%)
 • Midterm (20%)
 • Final exam (20%)
Late submissions

• All homeworks and quizzes are due on the date/time specified.

• You have 2 late days total over the semester to use when turning in homeworks/quizzes; each day extends the deadline by 24 hours.
Participation

- Participation can help boost your grade above a threshold (e.g., B+ → A-).

- Forms of participation:
 - Discussion in class
 - Answering questions on Piazza
Grading

• Info 259:
 • 8 homeworks (40%)
 • Weekly quizzes (10%)
 • Midterm (20%)
 • Project (30%)
259 Project

- Semester-long project (involving 1-3 students) involving natural language processing -- either focusing on core NLP methods or using NLP in support of an empirical research question
 - Project proposal/literature review
 - Midterm report
 - 6-page final report, workshop quality
 - Poster presentation
ACL 2019 workshops

- NLP for Building Educational Applications (BEA)
- Fact Extraction and VERification (FEVER)
- Figurative Language Processing (FLP)
- NLP for Conversational AI (NLP4ConvAI)
- Narrative Understanding, Storylines, and Events (NUSE)
- Representation Learning for NLP (RepL4NLP)
- Natural Language Processing for Social Media (SocialNLP)
- Neural Generation and Translation (WNGT)
Exams

• We’ll have two exams:
 • Midterm (3/12, in-class)
 • Final (5/15, 7-10pm; INFO 159 only)

• We will not be offering alternative exam dates, so if you anticipate a conflict, don’t take this class!
Academic integrity

• We’ll follow the UC Berkeley code of conduct http://sa.berkeley.edu/code-of-conduct

• You may discuss homeworks at a high level with your classmates (if you do, include their names on the submission), but each homework deliverable must be completed independently -- all writing and code must be your own; and all quizzes must be completed independently.
Academic integrity

• We’ll follow the UC Berkeley code of conduct http://sa.berkeley.edu/code-of-conduct

• If you mention the work of others, you must be clear in citing the appropriate source: http://gsi.berkeley.edu/gsi-guide-contents/academic-misconduct-intro/plagiarism/

• This holds for source code as well: if you use others' code (e.g., from StackOverflow), you must cite its source.
Lectures

• All lectures will be available via course capture on bCourses

• Attendance is not required for lectures, but strongly recommended.
Waitlisted

• Watch the lectures on bCourses (don’t come to class!), complete assignments
Next time

- Sentiment analysis and text classification
- Read SLP3 chapter 4 (on syllabus)
- DB office hours Wednesdays 10am-noon (314 South Hall)
- TAs:
 - Jon Gillick
 - Katie Stasaski
 - Alicia Tsai
 - Tobey Yang
 - Matt Joerke
 - Changran Hu