Panel B: Phrases Used More Often by Republicans

Two-Word Phrases
- stem cell
- natural gas
- death tax
- illegal aliens
- class action
- war on terror
- embryonic stem
- tax relief
- illegal immigration
- date the time
- personal accounts
- Saddam Hussein
- pass the bill
- private property
- border security
- President announces
- human life
- Chief Justice
- human embryos
- increase taxes
- retirement accounts
- government spending
- national forest
- minority leader
- urge support
- cell lines
- cord blood
- action lawsuits
- economic growth
- food program

Three-Word Phrases
- embryonic stem cell
- hate crimes legislation
- adult stem cells
- oil for food program
- personal retirement accounts
- energy and natural resources
- global war on terror
- hate crimes law
- change hearts and minds
- global war on terrorism
- Circuit Court of Appeals
- death tax repeal
- housing and urban affairs
- million jobs created
- national flood insurance
- oil for food scandal
- private property rights
- temporary worker program
- class action reform
- Chief Justice Rehnquist
- Tongass national forest
- pluripotent stem cells
- Supreme Court of Texas
- Justice Priscilla Owen
- Justice Janice Rogers
- American Bar Association
- growth and job creation
- natural gas natural
- Grand Ole Opry
- reform social security

Schwartz et al. (2013), "Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach"
Which are the words most likely to be from Android and most likely from iPhone?

- badly
- crazy
- weak
- spent
- talking
- strong
- mails
- joke
- senate
- dumb
- dead
- brexit
- ago
- treated
- temperament
- guns
- funny
- divided
- correct
- #trumptrain
- #supertuesday
- #rncircle
- #primary
- video
- tomorrow
- 7pm
- #trumppence16
- #crookedhillary
- #imwithyou
- #votetrump
- #americafirst
- join
- #trump2016
- #makeamericagreatagain
Distinctive terms

- Finding distinctive terms is useful:
 - As a data exploration exercise to understand larger trends in individual word differences.
 - As a pre-processing step of feature selection.
 - When the two datasets are \(A \) and \(\neg A \), these terms also provide insight into what \(A \) is about.
 - Many methods for finding these terms! (Developed in NLP, corpus linguistics, political science, etc.)
Difference in proportions

For word w written by author with label k (e.g., \{democrat, republican\}), define the frequency to be the normalized count of that word

\[
f_{w,k} = \frac{C(w, k)}{\sum_{w'} C(w', k)}
\]

- count of word w in group k
- count of all words in group k

\[
f_{w,k=\text{dem}} - f_{w,k=\text{repub}}
\]
Monroe et al. (2009), “Fightin’ Words”
Difference in proportions

• The difference in proportions is a conceptually simple measure and easily interpretable.

• Drawback: tends to emphasize words with high frequency (where even comparatively small differences in word usage between groups is amplified).

• Also, no measure whether a difference is statistically meaningful. We have uncertainty about the what the true proportion is for any group.
\(\chi^2 \)

- \(\chi^2 \) (chi-square) is a statistical test of dependence—here, dependence between the two variables of word identity and corpus identity.

- For assessing the difference in two datasets, this test assumes a 2x2 contingency table:

```
<table>
<thead>
<tr>
<th></th>
<th>word</th>
<th>~word</th>
</tr>
</thead>
<tbody>
<tr>
<td>corpus 1</td>
<td>7</td>
<td>104023</td>
</tr>
<tr>
<td>corpus 2</td>
<td>104</td>
<td>251093</td>
</tr>
</tbody>
</table>
```
Does the word *robot* occur significantly more frequently in science fiction?

\[
\chi^2
\]

\[
\begin{array}{c|cc|c}
\text{sci-fi} & \text{robot} & \neg \text{robot} & \text{total} \\
\hline
104 & 1004 & 1108 \\
2 & 13402 & 13404 \\
\end{array}
\]

= 10.3%

= 0.015%
For each cell in contingency table, sum the squared difference between observed value in cell and the expected value assuming independence.

\[
\chi^2 = \sum_{i,j} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}
\]
<table>
<thead>
<tr>
<th></th>
<th>robot</th>
<th>¬robot</th>
<th>sum</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>sci-fi</td>
<td>104</td>
<td>1004</td>
<td>1108</td>
<td>0.076</td>
</tr>
<tr>
<td>¬sci-fi</td>
<td>2</td>
<td>13402</td>
<td>13404</td>
<td>0.924</td>
</tr>
<tr>
<td>sum</td>
<td>106</td>
<td>14406</td>
<td></td>
<td>0.007</td>
</tr>
<tr>
<td>frequency</td>
<td>0.007</td>
<td>0.993</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Among 14512 words, we would expect to see 7.69 occurrences of \textit{robot} in sci-fi texts.

Assuming independence:

\[
P(\text{robot}, \text{scifi}) = P(\text{robot}) \times P(\text{scifi})
= 0.007 \times 0.076 = 0.00053
\]
\(\chi^2 \)

- What \(\chi^2 \) is asking is: how different are the observed counts different from the counts we would expect given complete independence?

<table>
<thead>
<tr>
<th></th>
<th>robot</th>
<th>\neg robot</th>
<th></th>
<th>robot</th>
<th>\neg robot</th>
</tr>
</thead>
<tbody>
<tr>
<td>sci-fi</td>
<td>104</td>
<td>1004</td>
<td>sci-fi</td>
<td>7.69</td>
<td>1095.2</td>
</tr>
<tr>
<td>\neg sci-fi</td>
<td>2</td>
<td>13402</td>
<td>\neg sci-fi</td>
<td>93.9</td>
<td>13315.2</td>
</tr>
</tbody>
</table>
\(\chi^2 \)

- With algebraic manipulation, simpler form for 2x2 table \(O \) (cf. Manning and Schütze 1999)

\[
\chi^2 = \frac{N(O_{11}O_{22} - O_{12}O_{21})^2}{(O_{11} + O_{12})(O_{11} + O_{21})(O_{12} + O_{22})(O_{21} + O_{22})}
\]
• The χ^2 value is a statistic of dependence with a probability governed by a χ^2 distribution; if this value has low enough probability in that measure, we can reject the null hypothesis of the independence between the two variables.
χ^2

5% probability mass from 3.84 forward; if χ^2 is in this region, then we reject independence as being too unlikely (at $\alpha = 0.05$)
Chi-square is ubiquitous in corpus linguistics (and in NLP as a measure of collocations).

- A few caveats for its use:
 - Each cell should have an *expected* count of at least 5
 - Each observation is independent
\[\chi^2 \]

- A drawback, however, is due to the burstiness of language: the tendency for the same words to clump together in texts.

- Chi-square is testing for independence of two variables (word identity and corpus identity), but it assumes each mention of the word is independent from the others.
• Is Dracula really a word that distinguishes these two corpora?

• It distinguishes one text, but otherwise doesn’t appear in the corpus at all.
Mann-Whitney rank sums test

- Mann-Whitney is a test of the difference in some quantity of interest in two datasets. Null hypothesis: if you select a random sample from group A and another from group B, just as likely that A will be greater than B as less than B.

```
   A A A A A A A A
  1 2 1 4 3 2 0 1

   B B B B B B B
  8 4 9 7 6 10
```
Mann-Whitney

<table>
<thead>
<tr>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Mann-Whitney

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th></th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

ranks

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

\[R_1 = 7 + 9 + 10 + 11 + 12 + 13 + 14 = 76 \]
Mann-Whitney

\[R_1 = 7 + 9 + 10 + 11 + 12 + 13 + 14 = 76 \]

\[U_1 = R_1 - \frac{n_1(n_1 + 1)}{2} \]

• Once we have this U value, we can ask whether it's significantly different from the average value we would expect if there's no difference between the two groups at all.
In corpus linguistics, each measurement is the count of a word in a fixed-sized chunk of text (e.g., 500 words).

This lets us accommodate a more realistic assumption about the burstiness of language.
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- 500 mentions of Dracula in one book
- Not a significant difference in ranks

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Other methods

• There are many other methods for learning distinguishing words between two corpus; major classes:

• Model-based methods that assume parametric forms + Bayesian priors (for smoothing) [Monroe et al. 2009]

• Methods using classification to learn informative features that separate classes.
Activity

- Hypothesize terms that will be different between @realdonaldtrump and @AOC
- Execute chi-square to find terms that are different
- Compare to Mann-Whitney for this data; think about the assumptions that you have with Twitter.