Applied Natural Language Processing

Info 256
Lecture 11: Neural networks (Feb 26, 2019)

David Bamman, UC Berkeley
History of NLP

- Foundational insights, 1940s/1950s
- Two camps (symbolic/stochastic), 1957-1970
- Four paradigms (stochastic, logic-based, NLU, discourse modeling), 1970-1983
- Empiricism and FSM (1983-1993)
- Field comes together (1994-1999)
- Neural networks (~2014–today)

J&M 2008, ch 1
Neural networks in NLP

• Language modeling [Mikolov et al. 2010]

• Text classification [Kim 2014; Iyyer et al. 2015]

• Syntactic parsing [Chen and Manning 2014, Dyer et al. 2015, Andor et al. 2016]

• CCG super tagging [Lewis and Steedman 2014]

• Dialogue agents [Sordoni et al. 2015, Vinyals and Lee 2015, Ji et al. 2016]

• (for overview, see Goldberg 2017, 1.3.1)
Neural networks

• Discrete, high-dimensional representation of inputs (one-hot vectors) -> low-dimensional “distributed” representations.

• Non-linear interactions of input features

• Multiple layers to capture hierarchical structure
Neural network libraries
Logistic regression

\[\hat{y} = \frac{1}{1 + \exp \left(- \sum_{i=1}^{F} x_i \beta_i \right)} \]

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>not</td>
<td>1</td>
<td>-0.5</td>
</tr>
<tr>
<td>bad</td>
<td>1</td>
<td>-1.7</td>
</tr>
<tr>
<td>movie</td>
<td>0</td>
<td>0.3</td>
</tr>
</tbody>
</table>
SGD

Algorithm 1 Logistic regression gradient descent

1: Data: training data $x \in \mathbb{R}^F, y \in \{0, 1\}$
2: $\beta = 0^F$
3: while not converged do
4: $\beta_{t+1} = \beta_t + \alpha \sum_{i=1}^{N} (y_i - \hat{p}(x_i)) x_i$
5: end while

Calculate the derivative of some loss function with respect to parameters we can change, update accordingly to make predictions on training data a little less wrong next time.
We can get to maximum value of this function by following the gradient

\[
\frac{d}{dx} - x^2 = -2x
\]
Logistic regression

\[\hat{y} = \frac{1}{1 + \exp \left(- \sum_{i=1}^{F} x_i \beta_i \right)} \]

<table>
<thead>
<tr>
<th>x</th>
<th>\beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>not</td>
<td>1</td>
</tr>
<tr>
<td>bad</td>
<td>1</td>
</tr>
<tr>
<td>movie</td>
<td>0</td>
</tr>
</tbody>
</table>
*For simplicity, we’re leaving out the bias term, but assume most layers have them as well.
not: 1
bad: 1
movie: 0

<table>
<thead>
<tr>
<th>x</th>
<th>W</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>not</td>
<td>-0.5</td>
<td>1.3</td>
</tr>
<tr>
<td>bad</td>
<td>0.4</td>
<td>0.08</td>
</tr>
<tr>
<td>movie</td>
<td>1.7</td>
<td>3.1</td>
</tr>
</tbody>
</table>
the hidden nodes are completely determined by the input and weights

\[h_j = f \left(\sum_{i=1}^{F} x_i W_{i,j} \right) \]
\[h_1 = f \left(\sum_{i=1}^{F} x_i W_{i,1} \right) \]
Activation functions

\[\sigma(z) = \frac{1}{1 + \exp(-z)} \]
Logistic regression

\[
\hat{y} = \frac{1}{1 + \exp \left(- \sum_{i=1}^{F} x_i \beta_i \right)}
\]

\[
\hat{y} = \sigma \left(\sum_{i=1}^{F} x_i \beta_i \right)
\]

We can think about logistic regression as a neural network with no hidden layers.
Activation functions

\[\tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)} \]
Activation functions

\[\text{rectifier}(z) = \max(0, z) \]
\[h_1 = \sigma \left(\sum_{i=1}^{F} x_i W_{i,1} \right) \]

\[h_2 = \sigma \left(\sum_{i=1}^{F} x_i W_{i,2} \right) \]

\[\hat{y} = \sigma [V_1 h_1 + V_2 h_2] \]
we can express y as a function only of the input x and the weights W and V

\[\hat{y} = \sigma \left[V_1 \left(\sigma \left(\sum_{i}^{F} x_i W_{i,1} \right) \right) + V_2 \left(\sigma \left(\sum_{i}^{F} x_i W_{i,2} \right) \right) \right] \]
Backpropagation: Given training samples of \(<x,y>\) pairs, we can use stochastic gradient descent to find the values of \(W\) and \(V\) that minimize the loss.
Neural networks are a series of functions chained together

The loss is another function chained on top

\[
\log \left(\sigma \left(\sigma \left(xW \right) V \right) \right)
\]
Let's take the likelihood for a single training example with label $y = 1$; we want this value to be as high as possible.
\[
A \frac{\partial \log (\sigma (hV))}{\partial \sigma (hV)} B \frac{\partial \sigma (hV)}{\partial hV} C \frac{\partial hV}{\partial V}
\]
\[
= \frac{1}{\sigma (hV)} \times \sigma (hV) \times (1 - \sigma (hV)) \times h
\]
\[
= (1 - \sigma (hV))h
\]
\[
= (1 - \hat{y})h
\]
Neural networks

- Tremendous flexibility on design choices (exchange feature engineering for model engineering)
- Articulate model structure and use the chain rule to derive parameter updates.
Neural network structures

Output one real value
Neural network structures

Multiclass: output 3 values, only one = 1 in training data
Neural network structures

output 3 values, several = 1 in training data
Regularization

• Increasing the number of parameters = increasing the possibility for overfitting to training data
Regularization

- L2 regularization: penalize W and V for being too large

- Dropout: when training on a $<x,y>$ pair, randomly remove some node and weights.

- Early stopping: Stop backpropagation before the training error is too small.
Deeper networks

\[
W_1 \quad W_2 \quad V
\]
Keras

- We’ll be using keras to implement several neural architectures over the next few weeks
- Today: Sequential models
Sequential

- Useful for models of limited complexity where the input to every layer is the output of the previous layer.
model=Sequential()

model.add(Dense(2,activation='relu', input_shape=(3,)))

model.add(Dense(1,activation='sigmoid'))
model = Sequential()

model.add(Dense(3, activation='relu',
 input_shape=(4,)))

model.add(Dense(2, activation='relu'))

model.add(Dense(1, activation='sigmoid'))
• Explore multilayer perceptron using keras