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Abstract 
 
World Wide Web content providers often resort to 
“cache-busting” in order to obtain demographic 
information. Object usage reporting methods have been 
proposed to address this problem. We quantitatively 
compare strategies for reporting object hits from proxy 
caches back to origin servers, and propose novel 
strategies for improving reporting performance and 
efficiency. Examining hit-metering and usage-limiting 
approaches proposed in RFC 2227, we find a 
fundamental trade-off between reporting latency and 
efficiency. Further, we find the temporal locality in the 
server reference stream to be significantly stronger than 
that in the object reference stream. We propose a server 
report aggregation strategy that leverages this fact, and 
show that it can reduce reporting latency and improve 
efficiency by as much as 80% and 100% respectively. We 
also propose and evaluate additional strategies to 
improve performance. These include: dynamic reporting 
thresholds, report aggregation in a cache hierarchy, and 
piggybacking reports on existing HTTP messages. 
 

1. Introduction 
 

The effectiveness of web caching has been reduced by 
the common practice of “cache-busting,” or marking web 
objects with a no-cache header. Publishers want to collect 
hit count information about their web objects, but 
allowing their objects to be cached eliminates a 
publisher’s ability to track object popularity and usage 
patterns. There are many ways a publisher can prevent a 
page from being cached: using the Cache-control, 
Pragma, Cache-expires, or Expires fields of the HTTP 
header [1], or alternately setting the Pragma or Expires 
fields in the HTML body with a meta tag. 

Examining the fifty most popular websites, as ranked 
by Media Metrix [2], reveals over half of the websites (26 
out of 50) perform cache-busting on their main page, and 
a third (16 out of 50) do so even on their privacy 
statement page, which contains only static content. 

Finally, an additional two sites employ “web bugs,” or 
1x1 transparent gif’s embedded in web pages for traffic 
monitoring purposes. 

If web caches send detailed hit count reports back to 
the publishers, the publishers will no longer need to 
cache-bust or insert transparent gif’s in order to monitor 
their site traffic. RFC 2227 details several options for 
caches and publishers to coordinate their reporting 
strategies [3]. Under the hit-metering strategy, a publisher 
can request that cache reports be sent at a regular time 
interval (by specifying a timeout value), while under the 
usage-limiting strategy, the publisher can request that 
reports be sent when a hit count threshold is reached (by 
specifying a max-uses value). Additional reporting 
triggers include object purges and conditional 
GET/HEAD messages. The cache reports are sent using 
HTTP conditional HEAD messages, with special headers 
for carrying reporting information. 

This work provides the first quantitative study of the 
efficiency and performance of web cache reporting 
strategies. First, we analyze the RFC 2227 strategies, and 
find the hit-metering strategy provides predictable bounds 
on reporting latency, while the usage-limiting strategy 
provides predictable bandwidth efficiency levels. In 
general, there is a fundamental tradeoff between 
timeliness of reports and bandwidth use. Setting smaller 
timeout and/or max-uses thresholds results in lower 
reporting latency at the expense of higher bandwidth 
usage. Publishers can thus choose the appropriate strategy 
and threshold to meet their reporting latency requirements 
while minimizing reporting cost. 

Using stack distance modeling techniques, we find in 
web reference streams a significantly higher degree of 
temporal locality at the server reference level than at the 
object reference level. This suggests that significant 
efficiency gains can be realized by aggregating reports for 
multiple objects from the same server into a single per-
server report. Indeed, our simulations show that this 
technique alone can reduce latency and improve 
efficiency by as much as 80% and 100% respectively. 

We also propose and evaluate other novel reporting 
strategies, including the use of dynamic thresholds under 



 

the usage-limiting strategy, piggybacking reports on 
existing HTTP traffic, and aggregating reports in a 
caching hierarchy. These strategies provide additional 
latency and efficiency gains, and can be easily 
implemented as extensions to RFC 2227, or incorporated 
with proprietary reporting mechanisms used by content 
delivery networks (CDNs). 

This paper is organized as follows: we provide a brief 
description of the methodology and data in Section 2. In 
Section 3, we define the key performance metrics for 
cache reporting, and provide quantitative evaluation of the 
hit-metering and usage-limiting strategies outlined in RFC 
2227. We also propose and evaluate the use of dynamic 
usage limits. In Section 4, we quantify the degree of 
server-level temporal locality in web reference streams, 
and propose a per-server report aggregation strategy to 
leverage this locality. Finally, we examine reporting 
strategies involving piggybacking and hierarchical 
aggregation in Section 5 before concluding the paper. 

 

2. Methodology and Data 
 

We extend the trace-driven cache simulator used in [4] 
to implement the various reporting strategies described in 
RFC 2227. The RFC specifies five situations when the 
cache MUST send a usage report: 

1. When the timeout period of an object has 
expired (hit-metering mode) 

2. When the max-uses limit of an object has been 
exceeded (usage-limiting mode) 

3. When the object (or hit count information) is 
purged from cache 

4. When the cache forwards a conditional GET 
message from one of its clients 

5. When the cache forwards a conditional HEAD 
message from one of its clients 

In addition, we also implement the following in the 
simulator: 

1. A baseline reporting strategy where a report is 
generated for every object cache hit 

2. Dynamically adjustable usage-limits (Section 3) 
3. Server-level reporting strategies where reports 

are generated according to per-server max-uses 
and timeout thresholds (Section 4) 

4. Piggybacking reports on other HTTP messages 
(Section 5) 

5. Running the simulator in two modes (leaf cache 
or parent cache) to study hierarchical cache 
reporting strategies (Section 5) 

We use four different proxy traces from Boeing [5], 
DEC [6], NLANR [7], and an anonymous corporate proxy 
(“Big Corp.”) in our simulations (Table 1) and obtain 
results consistent across the traces. 

Table 1. Trace summary 
Trace Start date Duration # Requests Request 

rate 
Boeing 3/1/1999 24 hrs 4.3 million 49.7/s 
DEC 9/11/1996 89 hrs 4.3 million 13.4/s 

NLANR 3/26/2002 33 hrs 3.3 million 27.7/s 
Big Corp. 7/10/2001 12 hrs 3.3 million 74.3/s 
 

3. Evaluation of Reporting Strategies 
 
3.1. Metrics  
 

There are several ways to measure the effectiveness of 
reporting strategies. From a publisher’s perspective, the 
most important metric is latency, or the delay from when 
an object receives a cache hit to when that hit is reported 
to the publisher. Some publishers may require real-time or 
near-real-time reporting to support on-the-fly content 
customization or click-stream analysis. Other publishers 
may be satisfied with an hourly or daily report. We 
calculate the average latency of all reported cache hits for 
each reporting strategy.  

Another important metric is the bandwidth cost savings 
realized from each strategy. We propose a bandwidth 
efficiency metric (E) based on the number of hits per 
report: 
 

E = 1 - (x)-1        (1) 
 
where x is the number of hits per report. We define a 
baseline reporting strategy as generating a report for each 
cache hit. Thus for the baseline case of one hit per report, 
x = 1 and E = 0. Conversely, E approaches 1 as x 
approaches infinity.  

This efficiency metric can be used to compute actual 
bandwidth savings in terms of bytes, depending on the 
formatting of the reports. RFC 2227 proposes simply 
reporting the number of hits for a given page. In this case, 
all reports will be the same size. We propose generating a 
line for each hit reported containing the URL, client IP 
address, and timestamp. In this way, the publisher 
receives a more robust report and proxy administrators 
may combine hits on different objects from the same 
server into one report (Section 4). For this reporting 
format, each report has a size of k0 + k1x where k0 is the 
size of the header in bytes, k1 is the size of a line for a 
reported hit in bytes and x is the number of hits in the 
report. We can calculate the average bytes per hit as 
bandwidth cost, BW = k0(1-E) + k1. Thus regardless of 
the reporting method, one can compare various strategies 
for bandwidth usage. The RFC 2227 reporting format is a 
special case where k1 = 0 and BW = k0/x. 



 

A final metric to consider is the number of hits that are 
not reported during the simulation period. There are two 
reasons why a cache hit will not be reported. The first is 
that the trace is finite. When the simulation ends, there 
will be reports that have not yet reached their trigger, and 
thus are not sent. The second reason a hit may not be 
reported is that the trigger for that object may never be 
reached. For example, if a report is only sent when an 
object is purged from the cache, a popular object may 
never generate a report. While it is not possible to 
attribute particular unreported hits to one cause or the 
other, the percentage of unreported cache hits can be 
taken into consideration when comparing strategies. 
 
3.2. Hit-Metering vs. Usage-Limiting Strategy  
 

Under the hit-metering strategy, the cache generates a 
report for an object every T seconds, where T is the 
timeout value specified by the publisher. This places an 
 

 
(a) Boeing trace, all cache sizes 

 
(b) All traces, cache size = 0.5% 

 
Figure 1. Average reported hit latency v. timeout 

threshold for hit-metering strategy 

upper bound on the latency of object hits. Figure 1 plots 
the average latency versus the timeout value, with the 
timeout value ranging from 10 seconds to 10 hours. We 
observe that the average latency increases linearly with T, 
but is not impacted by cache size. Here, cache size is 
measured as a percentage of the total unique bytes of the 
request stream. 

With increasing timeout threshold, each report is 
expected to contain a larger number of reported hits, thus 
increasing the bandwidth efficiency of the strategy. The 
efficiency will asymptotically approach unity as the 
timeout threshold approaches infinity. Figure 2 shows that 
a 10 hour reporting period can achieve an efficiency of 
0.8-0.9, but the efficiency drops to as low as 0.2 if a 
publisher requires 10-second reporting periods. Note that 
for a given time threshold, Big Corp displays the highest 
efficiency while DEC produces the lowest. This can be 
attributed to the differing request arrival rates across the 
different traces. The higher the request arrival rate, the 
more hits recorded within each reporting period. 

 

 
(a) Boeing trace, all cache sizes 

 
(b) All traces, cache size = 0.5% 

 
Figure 2. Efficiency v. timeout threshold for hit-

metering strategy 



 

Under the usage-limiting strategy, the cache generates 
a report for every N hits to an object, where N is the max-
uses value specified by the publisher. Since all reports 
have exactly N hits, the efficiency of this strategy follows 
equation (1) with x = N, and is independent of request 
arrival patterns or cache size. However, this strategy does 
not provide any guarantees on the timeliness of reports. 
Figure 3 shows the increase in average hit latency with 
increasing hit threshold. Indeed, cache hits for a given 
object may never be reported if the max-uses threshold is 
not reached. Figure 4 shows the percentage of cache hits 
that are unreported under the two schemes. It is interesting 
to note that a usage-limiting strategy with max-uses 
threshold of 3 hits fails to report a larger proportion of 
hits (14.9%) than a hit-metering strategy with a timeout 
threshold of as long as 10 hours (11.9%). 

Comparing the two strategies, we see a fundamental 
tradeoff between reporting timeliness and efficiency. The 
hit-metering strategy allows the publisher to  specify  tight 
 

 
(a) Boeing trace, all cache sizes 

 

 
(b) All traces, cache size = 0.5% 

 
Figure 3. Average reported hit latency  

v. timeout threshold for usage-limiting strategy 

latency bound, at the expense of efficiency, while the 
usage-limiting strategy provides predictable bandwidth 
efficiency with no latency guarantees. 
 
3.2.1. Dynamic Usage Limits. The effectiveness of the 
usage-limiting strategy is heavily influenced by the choice 
of N, the max-uses threshold. Ideally, the max-uses 
threshold should be chosen to match the popularity of the 
object. Earlier work has established that object popularity 
can be characterized using Zipf’s Law [8]. A frequently 
requested object should be tagged with a large N to 
achieve higher bandwidth efficiency, while a rarely 
requested object should have a small N to minimize the 
number of unreported hits. Given the difficulty in 
predicting the short-term popularity of objects, we 
propose that the max-uses threshold be dynamically 
adjusted according to:  

 
N(i) = min[2i, Nceiling]      (2) 

 

 
(a) Usage-limiting 

 

 
(b) Hit-metering (log scale for y-axis) 

 
Figure 4. Percent of cache hits unreported  

(Boeing trace, cache size = 0.5%) 



 

where i is the number of prior reports that has been 
generated for the object, and Nceiling is the ceiling max-
uses value. This means the number of hits per report 
doubles for each subsequent report generated, up until the 
ceiling. Note that N is reset to one if an object re-enters 
the cache after an earlier purge from the cache. 

We compare the latency bounds and bandwidth 
efficiencies of a dynamic usage-limited strategy (Nceiling = 
64) against two static usage-limited strategies (N = 3 and 
N = 100 respectively.) Specifically, we are interested in 
how the strategies perform for objects of different 
popularity levels. For non-popular objects, we find that 
the strategies with either a small static threshold (N = 3) 
or  a  dynamic  threshold  (Nceiling = 64)  provide  bounded 

 

 
 

Figure 5. Average reported hit latency v. 
popularity (hit frequency) 

(Boeing trace, cache = 0.5%) 
 

 
 

Figure 6. Efficiency v. popularity (hit frequency) 
(Boeing trace, cache = 0.5%) 

latencies, but not the strategy with a large static threshold 
(N = 100) (Figure 5). Indeed, all objects with fewer than 
100 hits will never receive reports under the N = 100 
strategy. On the other hand, for popular objects, the large 
static threshold and the dynamic threshold provide much 
higher efficiency than the small static threshold (Figure 
6). This confirms the suitability of dynamic thresholds for 
handling objects with varying degrees of popularity. 
 
3.2.2. Combining strategies. We combine a hit-metering 
strategy (with timeout = 1 hour) and a dynamic usage-
limiting strategy (with Nceiling = 64 hits). Combining 
strategies implies more reporting triggers, and therefore 
lower reporting latency and higher reporting rate. The 
efficiency is also correspondingly lower than those of the 
standalone strategies (Table 2). 
 

Table 2. Combining hit-metering and dynamic 
usage-limiting strategies (Boeing trace, 0.5% 

cache size) 
Strategy Av. 

latency 
Average  

hits/ 
report 

Efficiency % un- 
reported 

T = 3600s 2554 s 4.40 0.77 0.48% 
Nceiling = 64 2615 s 3.94 0.75 17.11% 

both 944 s 2.98 0.66 0.26% 

  
3.3. Purge Trigger 
 

In addition to the hit-metering and usage-limiting 
triggers, reports can also be generated upon object purges. 
The purge trigger is most effective in reducing the number 
of unreported hits when used in conjunction with large 
usage limits. Popular objects will have their reports 
generated by the usage limit trigger, while non-popular 
objects will have their reports generated by the object 
purge trigger. For example, with max-uses = 100, the 
purge trigger results in the reporting of an additional 23% 
of hits (Table 3). The purge trigger makes little difference 
when used in conjunction with a small max-uses threshold 
or with a timeout threshold, since even non-popular 
objects usually stay in cache for at least several hours. As 
a side note, we strongly advise against a reporting strategy 
that is based solely on purge triggers. Generating reports 
only upon object purges will result in a large number of 
unreported hits, mainly because popular objects might not 
get purged at all, and so all their hits go unreported. 

  



 

Table 3. Effect of purge trigger on usage-limiting 
and hit-metering strategies (Boeing Trace, 0.5% 

Cache Size) 
Strategy Average 

latency 
(s) 

Average  
hits/ 

report 

Efficiency % hits 
unreported 

N = 3 872 3 0.67 14.85% 
N = 3  

& purge 
950 2.67 0.63 12.89% 

N = 100 6068 100 0.99 57.61% 
N = 100  
& purge 

4406 8.08 0.88 34.10% 

T = 60s 50 1.68 0.41 0.01% 
T = 60s  
& purge 

49 1.66 0.40 0.01% 

T = 3600s 2544 4.40 0.77 0.48% 
T = 3600s  
& purge 

1959 3.48 0.71 0.42% 

 

4. Aggregating Reports to Origin Servers 
 

The composition of web pages of multiple embedded 
objects implies that HTTP requests for a given server tend 
to arrive in clusters. In this section, we aim to quantify 
this phenomenon, and use it to motivate a per-server 
reporting strategy. 
 
4.1. Temporal Locality at the Server Level 
 

While previous work [8-10] has studied the temporal 
locality of web page request streams, we are unaware of 
any literature regarding temporal locality of servers in a 
request stream. For web caching, the temporal locality of 
servers is unimportant; whether a page is cached or not is 
based on the characteristics of the object itself. For web 
cache reporting, on the other hand, temporal locality on 
the server level could allow for more efficient reporting 
strategies. Because reports will be sent to the server that 
published an object, combining reports for different 
objects that are to be sent to the same server could be 
more efficient. 

Following [9-11] we use the stack distance model [12] 
to quantify the presence and degree of temporal locality. 
At the object level, we calculate the number of distinct 
objects referenced since the last time a particular object 
was requested. At the server level, we calculate the 
number of distinct servers referenced since the last time 
any object from a particular server was requested. We 
then plot the distribution of stack distances against the 
frequency of each distance in the trace. 

Figure 7 shows the log-log plot of stack distance vs. 
frequency for the Boeing  trace  at  the  server  and  object  
 

Figure 7. Stack distance v. frequency for request 
stream (Boeing trace) 

 
levels. We can clearly see that the server stack distance 
plot has a steeper slope than the object stack distance plot. 
Using ordinary least squares regression we find that the 
server stack distance plots are almost twice as steep as the 
object stack distance plots (Table 4). We conclude that 
temporal locality is not only present at the server level, 
but clearly much stronger than at the object level. This is 
consistent with our expectation that clients tend to request 
multiple objects from the same site together or in close 
succession.  
 

Table 4. Temporal Locality: Request stream 
Slope (r2) Trace 

Object Level Server Level 
Boeing -0.74 (0.96) -1.45 (0.97) 

NLANR -0.96 (0.96) -1.38 (0.97) 
DEC -0.89 (0.96) -1.59 (0.98) 

Big Corp. -0.80 (0.97) -1.41 (0.97) 
 

The cache hit stream also displays stronger temporal 
localities at the server level over the object level. 
Surprisingly, even the purge stream exhibits temporal 
localities at the server level (Figure 8a) even though none 
can be observed at the object level (Figure 8b). 

 
4.2. Per-Server Report Aggregation 
 

Given the increased temporal locality of request, hit 
and purge streams at the server level, we propose a 
reporting strategy whereby hits for all objects from a 
given server are combined in any report sent to the server. 
In this scenario, the reporting format may include the 
URL and hit count for the individual objects, so that the 
report recipient can determine the allocation of hits 
among the different objects. 



 

 
(a Server Level 

 
 (b) Object level 

Figure 8. Stack distance v. frequency for purge 
stream (Boeing trace, cache size = 10%) 

 
Under the hit-metering strategy, each server has a 

single timeout value T, and a report will be generated 
every T seconds as before. However, the report will 
contain all hits for all the objects that originate from the 
server, rather than for a single object. The efficiency 
improvement ranges from 12% at T=36000s to 105% at 
T=10s (Figure 9). In general, the benefit of server-level 
reporting is greatest at short reporting periods. 

Under the usage-limiting strategy, the collection of all 
objects from a server has a single max-uses value N, and a 
report is triggered whenever N hits are registered for the 
server, regardless of which individual objects are 
requested. In Figure 10, we see latency reductions of 70% 
to 80% for the entire range of max-uses thresholds when 
switching from per-object reports to per-server reports.  

 
 

Figure 9. Efficiency v. timeout threshold (Boeing 
trace, cache size = 0.5%) 

 

 
 

Figure 10. Avg. latency v. max-uses threshold 
(Boeing trace, cache size = 0.5%) 

 
Similarly, per-server reporting produces better 

efficiency and latency numbers than per-object reporting 
in conjunction with the use of dynamic usage-limits. 
Figures 11 and 12 show efficiency improvements of 26% 
to 30% and latency reductions of 22% to 56% across the 
range of dynamic max-uses thresholds we examined. 
 

5. Piggybacking and Hierarchical Cache 
Reporting 
 

In this section, we consider a class of reporting 
strategies that maximizes efficiency by piggybacking 
reports on existing HTTP traffic: 

• per-object report piggybacked on conditional 
GET (or If-Modified-Since) message (as 
specified in RFC 2227) 



 

 
 

Figure 11. Efficiency v. dynamic max-uses 
threshold (Boeing trace, cache size = 0.5%) 

 

 
 

Figure 12. Avg. latency v. dynamic max-uses 
threshold (Boeing trace, cache size = 0.5%) 

 
 
• per-server report piggybacked on conditional 

GET (or If-Modified-Since) message 
• per-server report piggybacked on GET message 

(due to cache miss) 
• parent cache report piggybacked on child cache 

report (in cache hierarchies) 
 
By piggybacking a report on a message that is already 

being sent by the cache back to the origin server, we can 
achieve maximum bandwidth savings since there is no 
message header overhead. Thus, no matter how many hits 
are contained in each report, the efficiency is always 1. In 
this study we consider IMS (If-Modified-Since) messages 
and regular GET messages due to cache misses, but the 
technique can be readily applied to other types of 
messages exchanged between caches and servers, such as 
those used in the Web Cache Invalidation Protocol [13]. 

5.1. IMS and Cache Miss 
 

Caches routinely send IMS (If-Modified-Since) 
messages to origin servers to query the freshness of 
objects. The IMS strategy entails piggybacking a report 
on an IMS message that is already being sent to the 
server. In the per-object IMS strategy, only hits for that 
particular object are reported, while in the per-server IMS 
strategy, all hits for the server’s objects are reported. As 
in Section 4, we see that the per-server IMS reporting 
strategy realizes a 80% latency reduction over the per-
object IMS strategy (Table 5). 

Caches send HTTP GET messages (in response to 
cache misses) on a more frequent basis. Therefore we also 
evaluate the effectiveness of these messages as vehicles 
for piggybacking reports. Per-object reports do not apply 
in this case, since it is unlikely for a cache to have any hits 
to report for an object it doesn’t have. However, per-
server reports can be piggybacked on GET messages 
whenever the cache needs to fetch new objects from the 
server. As shown in Table 5, this strategy achieves very 
low reporting latencies and unreported rates without 
compromising on efficiency. 

 
Table 5. IMS strategy (Boeing trace) 

Strategy Avg.  
latency 

(s) 

Avg. 
hits/ 

report 

Efficiency % un-
reported 

IMS  
(object 
level) 

2495 2.42 1.0 23.21% 

IMS 
(server 
level) 

515 4.10 1.0 7.78% 

Cache 
miss 

(server 
level) 

186 3.05 1.0 1.31% 

IMS + 
Cache 
Miss 

(server) 

133 2.44 1.0 1.19% 

 
5.2 Hierarchical Cache Reporting 
 

Another situation where existing traffic presents an 
opportunity to piggyback reports is in a caching hierarchy. 
Since reports from each child cache are forwarded 
through the parent cache, adding the parent’s reports to 
the child’s can improve both latency and bandwidth 
efficiency. 

To simulate a two-level hierarchical cache, we run the 
simulator with traces from five sibling caches collected at 
Boeing in March 1999. Each sibling cache uses the same 



 

reporting strategy and spans the same time period. The 
sibling caches generate reports and cache misses, which 
are forwarded to the parent cache. The parent uses the 
same reporting strategy and relative cache size as its 
children. In addition, the parent cache may choose to 
operate in one of two modes: (i) forward all child reports 
(no piggyback), or (ii) adds its own cache hits, if any, to 
the child report (piggyback) (Figure 13).  

We find that hits to the parent cache are responsible 
for about a third of all hits reported to the publisher.  
When used in conjunction with dynamic usage-limiting 
thresholds (i.e., the use of Nceiling), piggybacking parent 
cache hits on child reports provides latency reductions in 
the range of 25% to 75% (Table 6). Only modest latency 
reductions are realizable, however, for the other reporting 
strategies. Hierarchical cache reporting also does not 
significantly impact bandwidth efficiency in any way. 
 Finally, we note that this technique can be extended to 
cooperative caching schemes, where object queries may 
be exchanged between sibling caches using ICP [14] or 
CARP [15] messages. The sibling caches may choose to 
aggregate their hit reports to further improve reporting 
latency and efficiency. 

6. Conclusion 
 

This paper quantitatively analyzes different web cache 
reporting strategies specified in RFC 2227 and introduces 
novel approaches for improving both reporting latency 
and efficiency. There are several key findings in this 
work. First, for the two reporting strategies specified in 
RFC 2227, we find the hit-metering strategy provides 
predictable bounds on reporting latency, while the usage-
limiting strategy provides predictable bandwidth 
efficiency levels. A lower latency bound can be achieved 
at the cost of lower bandwidth efficiency. Publishers can 
thus choose the appropriate strategy and threshold to meet 
their application needs at minimum bandwidth cost. In 
addition, we propose the use of dynamic thresholds under 
the usage-limiting strategy, which yields significant 
latency and efficiency improvements over static 
thresholds for objects with varying or unpredictable 
popularity levels.  

Second, we find that temporal locality in the reference 
stream is significantly stronger at the server level than at 
the object level. We can leverage this fact by aggregating 
hits for multiple objects into a single per-server report, 
and achieve latency reductions and efficiency 
improvements by as much as 80% and 100% respectively. 
 

Fig 13. Two-level hierarchical proxy cache simulation  
 

Table 6. Latency and efficiency improvements for piggybacking reports in a caching hierarchy 
0.5% cache size 50% cache size 

Average latency (s) Efficiency Average latency (s) Efficiency 
Strategy 

No 
piggyback 

Piggyback No 
piggyback

Piggyback No 
piggyback

Piggyback No 
piggyback 

Piggyback 

T = 60 49 49 0.423 0.449 54 54 0.029 0.051 
T = 3600 2447 2262 0.779 0.782 2536 2449 0.665 0.686 

N = 3 482 439 0.667 0.694 925 795 0.667 0.698 
N = 100 2544 2806 0.990 0.991 2900 2708 0.990 0.991 

Nceiling = 64 864 574 0.672 0.692 750 566 0.535 0.558 
Nceiling = 64 & 

T = 3600 
179 46 0.260 0.267 155 45 0.611 0.637 

child 0

child 1

child 2

child 3

child 4

parentchild cache reports & misses

a) forward children's reports
b) parent piggybacks reports on children's

publisherparent generates reports on trigger



 

Third, we find that piggybacking reports on existing 
HTTP traffic such as IMS and GET messages can further 
improve latency and efficiency. Report aggregation in 
caching hierarchies can produce 25-75% latency 
reductions, but only when using the usage-limiting 
strategy with dynamic thresholds. Negligible gains are 
realizable for the other reporting strategies.  

In general, we find that aggregation and piggybacking 
techniques can be exploited in a variety of contexts and 
used in conjunction with a variety of protocols (e.g., 
HTTP, ICP, CARP, WCIP) to improve the performance 
and efficiency of cache reporting strategies. The strategies 
and techniques considered in this analysis can be easily 
implemented as extensions to RFC 2227, or incorporated 
into proprietary reporting schemes used by content 
delivery networks. Efficient and reliable reporting 
mechanisms, when deployed widely, will eliminate the 
need for publishers to cache-bust for traffic monitoring 
purposes. 
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