

Efficiency and Performance of Web Cache Reporting Strategies

John Chuang
UC Berkeley

chuang@sims.berkeley.edu

Steve Kafka
UC Berkeley

skafka@sims.berkeley.edu

Kim Norlen
UC Berkeley

knorlen@sims.berkeley.edu

Abstract

World Wide Web content providers often resort to
“cache-busting” in order to obtain demographic
information. Object usage reporting methods have been
proposed to address this problem. We quantitatively
compare strategies for reporting object hits from proxy
caches back to origin servers, and propose novel
strategies for improving reporting performance and
efficiency. Examining hit-metering and usage-limiting
approaches proposed in RFC 2227, we find a
fundamental trade-off between reporting latency and
efficiency. Further, we find the temporal locality in the
server reference stream to be significantly stronger than
that in the object reference stream. We propose a server
report aggregation strategy that leverages this fact, and
show that it can reduce reporting latency and improve
efficiency by as much as 80% and 100% respectively. We
also propose and evaluate additional strategies to
improve performance. These include: dynamic reporting
thresholds, report aggregation in a cache hierarchy, and
piggybacking reports on existing HTTP messages.

1. Introduction

The effectiveness of web caching has been reduced by
the common practice of “cache-busting,” or marking web
objects with a no-cache header. Publishers want to collect
hit count information about their web objects, but
allowing their objects to be cached eliminates a
publisher’s ability to track object popularity and usage
patterns. There are many ways a publisher can prevent a
page from being cached: using the Cache-control,
Pragma, Cache-expires, or Expires fields of the HTTP
header [1], or alternately setting the Pragma or Expires
fields in the HTML body with a meta tag.

Examining the fifty most popular websites, as ranked
by Media Metrix [2], reveals over half of the websites (26
out of 50) perform cache-busting on their main page, and
a third (16 out of 50) do so even on their privacy
statement page, which contains only static content.

Finally, an additional two sites employ “web bugs,” or
1x1 transparent gif’s embedded in web pages for traffic
monitoring purposes.

If web caches send detailed hit count reports back to
the publishers, the publishers will no longer need to
cache-bust or insert transparent gif’s in order to monitor
their site traffic. RFC 2227 details several options for
caches and publishers to coordinate their reporting
strategies [3]. Under the hit-metering strategy, a publisher
can request that cache reports be sent at a regular time
interval (by specifying a timeout value), while under the
usage-limiting strategy, the publisher can request that
reports be sent when a hit count threshold is reached (by
specifying a max-uses value). Additional reporting
triggers include object purges and conditional
GET/HEAD messages. The cache reports are sent using
HTTP conditional HEAD messages, with special headers
for carrying reporting information.

This work provides the first quantitative study of the
efficiency and performance of web cache reporting
strategies. First, we analyze the RFC 2227 strategies, and
find the hit-metering strategy provides predictable bounds
on reporting latency, while the usage-limiting strategy
provides predictable bandwidth efficiency levels. In
general, there is a fundamental tradeoff between
timeliness of reports and bandwidth use. Setting smaller
timeout and/or max-uses thresholds results in lower
reporting latency at the expense of higher bandwidth
usage. Publishers can thus choose the appropriate strategy
and threshold to meet their reporting latency requirements
while minimizing reporting cost.

Using stack distance modeling techniques, we find in
web reference streams a significantly higher degree of
temporal locality at the server reference level than at the
object reference level. This suggests that significant
efficiency gains can be realized by aggregating reports for
multiple objects from the same server into a single per-
server report. Indeed, our simulations show that this
technique alone can reduce latency and improve
efficiency by as much as 80% and 100% respectively.

We also propose and evaluate other novel reporting
strategies, including the use of dynamic thresholds under

the usage-limiting strategy, piggybacking reports on
existing HTTP traffic, and aggregating reports in a
caching hierarchy. These strategies provide additional
latency and efficiency gains, and can be easily
implemented as extensions to RFC 2227, or incorporated
with proprietary reporting mechanisms used by content
delivery networks (CDNs).

This paper is organized as follows: we provide a brief
description of the methodology and data in Section 2. In
Section 3, we define the key performance metrics for
cache reporting, and provide quantitative evaluation of the
hit-metering and usage-limiting strategies outlined in RFC
2227. We also propose and evaluate the use of dynamic
usage limits. In Section 4, we quantify the degree of
server-level temporal locality in web reference streams,
and propose a per-server report aggregation strategy to
leverage this locality. Finally, we examine reporting
strategies involving piggybacking and hierarchical
aggregation in Section 5 before concluding the paper.

2. Methodology and Data

We extend the trace-driven cache simulator used in [4]
to implement the various reporting strategies described in
RFC 2227. The RFC specifies five situations when the
cache MUST send a usage report:

1. When the timeout period of an object has
expired (hit-metering mode)

2. When the max-uses limit of an object has been
exceeded (usage-limiting mode)

3. When the object (or hit count information) is
purged from cache

4. When the cache forwards a conditional GET
message from one of its clients

5. When the cache forwards a conditional HEAD
message from one of its clients

In addition, we also implement the following in the
simulator:

1. A baseline reporting strategy where a report is
generated for every object cache hit

2. Dynamically adjustable usage-limits (Section 3)
3. Server-level reporting strategies where reports

are generated according to per-server max-uses
and timeout thresholds (Section 4)

4. Piggybacking reports on other HTTP messages
(Section 5)

5. Running the simulator in two modes (leaf cache
or parent cache) to study hierarchical cache
reporting strategies (Section 5)

We use four different proxy traces from Boeing [5],
DEC [6], NLANR [7], and an anonymous corporate proxy
(“Big Corp.”) in our simulations (Table 1) and obtain
results consistent across the traces.

Table 1. Trace summary
Trace Start date Duration # Requests Request

rate
Boeing 3/1/1999 24 hrs 4.3 million 49.7/s
DEC 9/11/1996 89 hrs 4.3 million 13.4/s

NLANR 3/26/2002 33 hrs 3.3 million 27.7/s
Big Corp. 7/10/2001 12 hrs 3.3 million 74.3/s

3. Evaluation of Reporting Strategies

3.1. Metrics

There are several ways to measure the effectiveness of
reporting strategies. From a publisher’s perspective, the
most important metric is latency, or the delay from when
an object receives a cache hit to when that hit is reported
to the publisher. Some publishers may require real-time or
near-real-time reporting to support on-the-fly content
customization or click-stream analysis. Other publishers
may be satisfied with an hourly or daily report. We
calculate the average latency of all reported cache hits for
each reporting strategy.

Another important metric is the bandwidth cost savings
realized from each strategy. We propose a bandwidth
efficiency metric (E) based on the number of hits per
report:

E = 1 - (x)-1 (1)

where x is the number of hits per report. We define a
baseline reporting strategy as generating a report for each
cache hit. Thus for the baseline case of one hit per report,
x = 1 and E = 0. Conversely, E approaches 1 as x
approaches infinity.

This efficiency metric can be used to compute actual
bandwidth savings in terms of bytes, depending on the
formatting of the reports. RFC 2227 proposes simply
reporting the number of hits for a given page. In this case,
all reports will be the same size. We propose generating a
line for each hit reported containing the URL, client IP
address, and timestamp. In this way, the publisher
receives a more robust report and proxy administrators
may combine hits on different objects from the same
server into one report (Section 4). For this reporting
format, each report has a size of k0 + k1x where k0 is the
size of the header in bytes, k1 is the size of a line for a
reported hit in bytes and x is the number of hits in the
report. We can calculate the average bytes per hit as
bandwidth cost, BW = k0(1-E) + k1. Thus regardless of
the reporting method, one can compare various strategies
for bandwidth usage. The RFC 2227 reporting format is a
special case where k1 = 0 and BW = k0/x.

A final metric to consider is the number of hits that are
not reported during the simulation period. There are two
reasons why a cache hit will not be reported. The first is
that the trace is finite. When the simulation ends, there
will be reports that have not yet reached their trigger, and
thus are not sent. The second reason a hit may not be
reported is that the trigger for that object may never be
reached. For example, if a report is only sent when an
object is purged from the cache, a popular object may
never generate a report. While it is not possible to
attribute particular unreported hits to one cause or the
other, the percentage of unreported cache hits can be
taken into consideration when comparing strategies.

3.2. Hit-Metering vs. Usage-Limiting Strategy

Under the hit-metering strategy, the cache generates a
report for an object every T seconds, where T is the
timeout value specified by the publisher. This places an

(a) Boeing trace, all cache sizes

(b) All traces, cache size = 0.5%

Figure 1. Average reported hit latency v. timeout

threshold for hit-metering strategy

upper bound on the latency of object hits. Figure 1 plots
the average latency versus the timeout value, with the
timeout value ranging from 10 seconds to 10 hours. We
observe that the average latency increases linearly with T,
but is not impacted by cache size. Here, cache size is
measured as a percentage of the total unique bytes of the
request stream.

With increasing timeout threshold, each report is
expected to contain a larger number of reported hits, thus
increasing the bandwidth efficiency of the strategy. The
efficiency will asymptotically approach unity as the
timeout threshold approaches infinity. Figure 2 shows that
a 10 hour reporting period can achieve an efficiency of
0.8-0.9, but the efficiency drops to as low as 0.2 if a
publisher requires 10-second reporting periods. Note that
for a given time threshold, Big Corp displays the highest
efficiency while DEC produces the lowest. This can be
attributed to the differing request arrival rates across the
different traces. The higher the request arrival rate, the
more hits recorded within each reporting period.

(a) Boeing trace, all cache sizes

(b) All traces, cache size = 0.5%

Figure 2. Efficiency v. timeout threshold for hit-

metering strategy

Under the usage-limiting strategy, the cache generates
a report for every N hits to an object, where N is the max-
uses value specified by the publisher. Since all reports
have exactly N hits, the efficiency of this strategy follows
equation (1) with x = N, and is independent of request
arrival patterns or cache size. However, this strategy does
not provide any guarantees on the timeliness of reports.
Figure 3 shows the increase in average hit latency with
increasing hit threshold. Indeed, cache hits for a given
object may never be reported if the max-uses threshold is
not reached. Figure 4 shows the percentage of cache hits
that are unreported under the two schemes. It is interesting
to note that a usage-limiting strategy with max-uses
threshold of 3 hits fails to report a larger proportion of
hits (14.9%) than a hit-metering strategy with a timeout
threshold of as long as 10 hours (11.9%).

Comparing the two strategies, we see a fundamental
tradeoff between reporting timeliness and efficiency. The
hit-metering strategy allows the publisher to specify tight

(a) Boeing trace, all cache sizes

(b) All traces, cache size = 0.5%

Figure 3. Average reported hit latency

v. timeout threshold for usage-limiting strategy

latency bound, at the expense of efficiency, while the
usage-limiting strategy provides predictable bandwidth
efficiency with no latency guarantees.

3.2.1. Dynamic Usage Limits. The effectiveness of the
usage-limiting strategy is heavily influenced by the choice
of N, the max-uses threshold. Ideally, the max-uses
threshold should be chosen to match the popularity of the
object. Earlier work has established that object popularity
can be characterized using Zipf’s Law [8]. A frequently
requested object should be tagged with a large N to
achieve higher bandwidth efficiency, while a rarely
requested object should have a small N to minimize the
number of unreported hits. Given the difficulty in
predicting the short-term popularity of objects, we
propose that the max-uses threshold be dynamically
adjusted according to:

N(i) = min[2i, Nceiling] (2)

(a) Usage-limiting

(b) Hit-metering (log scale for y-axis)

Figure 4. Percent of cache hits unreported

(Boeing trace, cache size = 0.5%)

where i is the number of prior reports that has been
generated for the object, and Nceiling is the ceiling max-
uses value. This means the number of hits per report
doubles for each subsequent report generated, up until the
ceiling. Note that N is reset to one if an object re-enters
the cache after an earlier purge from the cache.

We compare the latency bounds and bandwidth
efficiencies of a dynamic usage-limited strategy (Nceiling =
64) against two static usage-limited strategies (N = 3 and
N = 100 respectively.) Specifically, we are interested in
how the strategies perform for objects of different
popularity levels. For non-popular objects, we find that
the strategies with either a small static threshold (N = 3)
or a dynamic threshold (Nceiling = 64) provide bounded

Figure 5. Average reported hit latency v.
popularity (hit frequency)

(Boeing trace, cache = 0.5%)

Figure 6. Efficiency v. popularity (hit frequency)
(Boeing trace, cache = 0.5%)

latencies, but not the strategy with a large static threshold
(N = 100) (Figure 5). Indeed, all objects with fewer than
100 hits will never receive reports under the N = 100
strategy. On the other hand, for popular objects, the large
static threshold and the dynamic threshold provide much
higher efficiency than the small static threshold (Figure
6). This confirms the suitability of dynamic thresholds for
handling objects with varying degrees of popularity.

3.2.2. Combining strategies. We combine a hit-metering
strategy (with timeout = 1 hour) and a dynamic usage-
limiting strategy (with Nceiling = 64 hits). Combining
strategies implies more reporting triggers, and therefore
lower reporting latency and higher reporting rate. The
efficiency is also correspondingly lower than those of the
standalone strategies (Table 2).

Table 2. Combining hit-metering and dynamic
usage-limiting strategies (Boeing trace, 0.5%

cache size)
Strategy Av.

latency
Average

hits/
report

Efficiency % un-
reported

T = 3600s 2554 s 4.40 0.77 0.48%
Nceiling = 64 2615 s 3.94 0.75 17.11%

both 944 s 2.98 0.66 0.26%

3.3. Purge Trigger

In addition to the hit-metering and usage-limiting
triggers, reports can also be generated upon object purges.
The purge trigger is most effective in reducing the number
of unreported hits when used in conjunction with large
usage limits. Popular objects will have their reports
generated by the usage limit trigger, while non-popular
objects will have their reports generated by the object
purge trigger. For example, with max-uses = 100, the
purge trigger results in the reporting of an additional 23%
of hits (Table 3). The purge trigger makes little difference
when used in conjunction with a small max-uses threshold
or with a timeout threshold, since even non-popular
objects usually stay in cache for at least several hours. As
a side note, we strongly advise against a reporting strategy
that is based solely on purge triggers. Generating reports
only upon object purges will result in a large number of
unreported hits, mainly because popular objects might not
get purged at all, and so all their hits go unreported.

Table 3. Effect of purge trigger on usage-limiting
and hit-metering strategies (Boeing Trace, 0.5%

Cache Size)
Strategy Average

latency
(s)

Average
hits/

report

Efficiency % hits
unreported

N = 3 872 3 0.67 14.85%
N = 3

& purge
950 2.67 0.63 12.89%

N = 100 6068 100 0.99 57.61%
N = 100
& purge

4406 8.08 0.88 34.10%

T = 60s 50 1.68 0.41 0.01%
T = 60s
& purge

49 1.66 0.40 0.01%

T = 3600s 2544 4.40 0.77 0.48%
T = 3600s
& purge

1959 3.48 0.71 0.42%

4. Aggregating Reports to Origin Servers

The composition of web pages of multiple embedded
objects implies that HTTP requests for a given server tend
to arrive in clusters. In this section, we aim to quantify
this phenomenon, and use it to motivate a per-server
reporting strategy.

4.1. Temporal Locality at the Server Level

While previous work [8-10] has studied the temporal
locality of web page request streams, we are unaware of
any literature regarding temporal locality of servers in a
request stream. For web caching, the temporal locality of
servers is unimportant; whether a page is cached or not is
based on the characteristics of the object itself. For web
cache reporting, on the other hand, temporal locality on
the server level could allow for more efficient reporting
strategies. Because reports will be sent to the server that
published an object, combining reports for different
objects that are to be sent to the same server could be
more efficient.

Following [9-11] we use the stack distance model [12]
to quantify the presence and degree of temporal locality.
At the object level, we calculate the number of distinct
objects referenced since the last time a particular object
was requested. At the server level, we calculate the
number of distinct servers referenced since the last time
any object from a particular server was requested. We
then plot the distribution of stack distances against the
frequency of each distance in the trace.

Figure 7 shows the log-log plot of stack distance vs.
frequency for the Boeing trace at the server and object

Figure 7. Stack distance v. frequency for request
stream (Boeing trace)

levels. We can clearly see that the server stack distance
plot has a steeper slope than the object stack distance plot.
Using ordinary least squares regression we find that the
server stack distance plots are almost twice as steep as the
object stack distance plots (Table 4). We conclude that
temporal locality is not only present at the server level,
but clearly much stronger than at the object level. This is
consistent with our expectation that clients tend to request
multiple objects from the same site together or in close
succession.

Table 4. Temporal Locality: Request stream
Slope (r2) Trace

Object Level Server Level
Boeing -0.74 (0.96) -1.45 (0.97)

NLANR -0.96 (0.96) -1.38 (0.97)
DEC -0.89 (0.96) -1.59 (0.98)

Big Corp. -0.80 (0.97) -1.41 (0.97)

The cache hit stream also displays stronger temporal
localities at the server level over the object level.
Surprisingly, even the purge stream exhibits temporal
localities at the server level (Figure 8a) even though none
can be observed at the object level (Figure 8b).

4.2. Per-Server Report Aggregation

Given the increased temporal locality of request, hit
and purge streams at the server level, we propose a
reporting strategy whereby hits for all objects from a
given server are combined in any report sent to the server.
In this scenario, the reporting format may include the
URL and hit count for the individual objects, so that the
report recipient can determine the allocation of hits
among the different objects.

(a Server Level

 (b) Object level

Figure 8. Stack distance v. frequency for purge
stream (Boeing trace, cache size = 10%)

Under the hit-metering strategy, each server has a

single timeout value T, and a report will be generated
every T seconds as before. However, the report will
contain all hits for all the objects that originate from the
server, rather than for a single object. The efficiency
improvement ranges from 12% at T=36000s to 105% at
T=10s (Figure 9). In general, the benefit of server-level
reporting is greatest at short reporting periods.

Under the usage-limiting strategy, the collection of all
objects from a server has a single max-uses value N, and a
report is triggered whenever N hits are registered for the
server, regardless of which individual objects are
requested. In Figure 10, we see latency reductions of 70%
to 80% for the entire range of max-uses thresholds when
switching from per-object reports to per-server reports.

Figure 9. Efficiency v. timeout threshold (Boeing
trace, cache size = 0.5%)

Figure 10. Avg. latency v. max-uses threshold
(Boeing trace, cache size = 0.5%)

Similarly, per-server reporting produces better

efficiency and latency numbers than per-object reporting
in conjunction with the use of dynamic usage-limits.
Figures 11 and 12 show efficiency improvements of 26%
to 30% and latency reductions of 22% to 56% across the
range of dynamic max-uses thresholds we examined.

5. Piggybacking and Hierarchical Cache
Reporting

In this section, we consider a class of reporting
strategies that maximizes efficiency by piggybacking
reports on existing HTTP traffic:

• per-object report piggybacked on conditional
GET (or If-Modified-Since) message (as
specified in RFC 2227)

Figure 11. Efficiency v. dynamic max-uses
threshold (Boeing trace, cache size = 0.5%)

Figure 12. Avg. latency v. dynamic max-uses
threshold (Boeing trace, cache size = 0.5%)

• per-server report piggybacked on conditional

GET (or If-Modified-Since) message
• per-server report piggybacked on GET message

(due to cache miss)
• parent cache report piggybacked on child cache

report (in cache hierarchies)

By piggybacking a report on a message that is already

being sent by the cache back to the origin server, we can
achieve maximum bandwidth savings since there is no
message header overhead. Thus, no matter how many hits
are contained in each report, the efficiency is always 1. In
this study we consider IMS (If-Modified-Since) messages
and regular GET messages due to cache misses, but the
technique can be readily applied to other types of
messages exchanged between caches and servers, such as
those used in the Web Cache Invalidation Protocol [13].

5.1. IMS and Cache Miss

Caches routinely send IMS (If-Modified-Since)
messages to origin servers to query the freshness of
objects. The IMS strategy entails piggybacking a report
on an IMS message that is already being sent to the
server. In the per-object IMS strategy, only hits for that
particular object are reported, while in the per-server IMS
strategy, all hits for the server’s objects are reported. As
in Section 4, we see that the per-server IMS reporting
strategy realizes a 80% latency reduction over the per-
object IMS strategy (Table 5).

Caches send HTTP GET messages (in response to
cache misses) on a more frequent basis. Therefore we also
evaluate the effectiveness of these messages as vehicles
for piggybacking reports. Per-object reports do not apply
in this case, since it is unlikely for a cache to have any hits
to report for an object it doesn’t have. However, per-
server reports can be piggybacked on GET messages
whenever the cache needs to fetch new objects from the
server. As shown in Table 5, this strategy achieves very
low reporting latencies and unreported rates without
compromising on efficiency.

Table 5. IMS strategy (Boeing trace)

Strategy Avg.
latency

(s)

Avg.
hits/

report

Efficiency % un-
reported

IMS
(object
level)

2495 2.42 1.0 23.21%

IMS
(server
level)

515 4.10 1.0 7.78%

Cache
miss

(server
level)

186 3.05 1.0 1.31%

IMS +
Cache
Miss

(server)

133 2.44 1.0 1.19%

5.2 Hierarchical Cache Reporting

Another situation where existing traffic presents an
opportunity to piggyback reports is in a caching hierarchy.
Since reports from each child cache are forwarded
through the parent cache, adding the parent’s reports to
the child’s can improve both latency and bandwidth
efficiency.

To simulate a two-level hierarchical cache, we run the
simulator with traces from five sibling caches collected at
Boeing in March 1999. Each sibling cache uses the same

reporting strategy and spans the same time period. The
sibling caches generate reports and cache misses, which
are forwarded to the parent cache. The parent uses the
same reporting strategy and relative cache size as its
children. In addition, the parent cache may choose to
operate in one of two modes: (i) forward all child reports
(no piggyback), or (ii) adds its own cache hits, if any, to
the child report (piggyback) (Figure 13).

We find that hits to the parent cache are responsible
for about a third of all hits reported to the publisher.
When used in conjunction with dynamic usage-limiting
thresholds (i.e., the use of Nceiling), piggybacking parent
cache hits on child reports provides latency reductions in
the range of 25% to 75% (Table 6). Only modest latency
reductions are realizable, however, for the other reporting
strategies. Hierarchical cache reporting also does not
significantly impact bandwidth efficiency in any way.
 Finally, we note that this technique can be extended to
cooperative caching schemes, where object queries may
be exchanged between sibling caches using ICP [14] or
CARP [15] messages. The sibling caches may choose to
aggregate their hit reports to further improve reporting
latency and efficiency.

6. Conclusion

This paper quantitatively analyzes different web cache
reporting strategies specified in RFC 2227 and introduces
novel approaches for improving both reporting latency
and efficiency. There are several key findings in this
work. First, for the two reporting strategies specified in
RFC 2227, we find the hit-metering strategy provides
predictable bounds on reporting latency, while the usage-
limiting strategy provides predictable bandwidth
efficiency levels. A lower latency bound can be achieved
at the cost of lower bandwidth efficiency. Publishers can
thus choose the appropriate strategy and threshold to meet
their application needs at minimum bandwidth cost. In
addition, we propose the use of dynamic thresholds under
the usage-limiting strategy, which yields significant
latency and efficiency improvements over static
thresholds for objects with varying or unpredictable
popularity levels.

Second, we find that temporal locality in the reference
stream is significantly stronger at the server level than at
the object level. We can leverage this fact by aggregating
hits for multiple objects into a single per-server report,
and achieve latency reductions and efficiency
improvements by as much as 80% and 100% respectively.

Fig 13. Two-level hierarchical proxy cache simulation

Table 6. Latency and efficiency improvements for piggybacking reports in a caching hierarchy
0.5% cache size 50% cache size

Average latency (s) Efficiency Average latency (s) Efficiency
Strategy

No
piggyback

Piggyback No
piggyback

Piggyback No
piggyback

Piggyback No
piggyback

Piggyback

T = 60 49 49 0.423 0.449 54 54 0.029 0.051
T = 3600 2447 2262 0.779 0.782 2536 2449 0.665 0.686

N = 3 482 439 0.667 0.694 925 795 0.667 0.698
N = 100 2544 2806 0.990 0.991 2900 2708 0.990 0.991

Nceiling = 64 864 574 0.672 0.692 750 566 0.535 0.558
Nceiling = 64 &

T = 3600
179 46 0.260 0.267 155 45 0.611 0.637

child 0

child 1

child 2

child 3

child 4

parentchild cache reports & misses

a) forward children's reports
b) parent piggybacks reports on children's

publisherparent generates reports on trigger

Third, we find that piggybacking reports on existing
HTTP traffic such as IMS and GET messages can further
improve latency and efficiency. Report aggregation in
caching hierarchies can produce 25-75% latency
reductions, but only when using the usage-limiting
strategy with dynamic thresholds. Negligible gains are
realizable for the other reporting strategies.

In general, we find that aggregation and piggybacking
techniques can be exploited in a variety of contexts and
used in conjunction with a variety of protocols (e.g.,
HTTP, ICP, CARP, WCIP) to improve the performance
and efficiency of cache reporting strategies. The strategies
and techniques considered in this analysis can be easily
implemented as extensions to RFC 2227, or incorporated
into proprietary reporting schemes used by content
delivery networks. Efficient and reliable reporting
mechanisms, when deployed widely, will eliminate the
need for publishers to cache-bust for traffic monitoring
purposes.

Acknowledgement

This work is supported by the U. S. National Science
Foundation under Cooperative Agreement Number ITR-
0085879. We thank the anonymous reviewers for their
insightful comments.

References

[1] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, and T. Berners-Lee. Hypertext Transfer Protocol --
HTTP/1.1. RFC 2616, June 1999.

[2] Jupiter Media Metrix. U.S. Top 50 Web and Digital Media
Properties Unique Visitors. April 2002. http://www.jmm.com/
xp/jmm/press/mediaMetrixTop50.xml

[3] J. Mogul and P. Leach. Simple Hit-Metering and Usage-
Limiting for HTTP. RFC 2227, October 1997.

[4] P. Cao and S. Irani. Cost-aware WWW proxy caching
algorithms. Proceedings of the 1997 USENIX Symposium on
Internet Technology and Systems, 193-206.

[5] Boeing Proxy Logs, ftp://researchsmp2.cc.vt.edu/pub/
boeing/

[6] Digital Equipment Cooperation Web Proxy Traces,
ftp://ftp.digital.com/pub/DEC/traces/proxy/webtraces.html

[7] National Laboratory for Applied Network Research Proxy
Logs, ftp://ftp.ircache.net

[8] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
Caching and Zipf-like Distributions: Evidence and Implications.
In IEEE Infocorn, pages 126 134, March 1999.

[9] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira.
Characterizing Reference Locality in the WWW. Proceedings of
1996 International Conference on Parallel and Distributed
Information Systems (PDIS '96), 92-103.

[10] S. Jin and A. Bestavros. Temporal Locality in Web Request
Streams: Sources, Characteristics, and Caching Implications.
Proceedings of ACM Sigmetrics 2000, Santa Clara, CA, June
2000.

[11] L. Cherkasova and G. Ciardo. Characterizing Temporal
Locality and its Impact on Web Server Performance.
Proceedings of ICCN2000, Las Vegas, NV October 2000.

[12] R. Mattson, J. Gecsei, D. Slutz, and I. Traiger. Evaluation
techniques and storage hierarchies. IBM Systems Journal, 9:78-
117. 1970.

[13] D. Li, P. Cao, M. Dahlin. WCIP: Web Cache Invalidation
Protocol. Internet Draft <draft-danli-wrec-wcip-01.txt>, March
2001.

[14] D. Wessels and K. Claffy. Internet Cache Protocol (ICP),
version 2. RFC 2186, September 1997.

[15] V. Valloppillil and K. W. Ross. Cache Array Routing
Protocol v1.1. Internet Draft <draft-vinod-carp-v1-03.txt>,
February 1998.

