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Abstract

This paper advocates for a research direction in human-
centered data science focused on interpretability, which is
often in conflict both with predictive accuracy (more com-
plex, non-linear models are often superior predictors to sim-
pler yet interpretable models) and representational com-
plexity (models with more realistic features are often better
fits to data than models with fewer, simpler features). What
consequences do these tradeoffs have in practice, and to
what degree are they necessary compromises? Can we de-
velop methods that are simultaneously interpretable, highly
predictive, and representationally complex?
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Introduction

The statistical models that underlie data science are often
used for two ends: making predictions and understand-
ing causal (or more simply, correlational) effects [5]. Many
domains have no need for prediction at all, but use the ma-
chinery of predictive models to understand the influence of
observable features on some outcome. Research in quan-



titative literary studies, for example, can develop a model
to predict authorship from observed text, but only rarely
for the sake of inferring the author of an unknown text [19];
more common is using such a model to identify character-
istic style—the features that discriminate one author from
another. Much social scientific work in “predicting” politi-
cal persuasion, personality, gender, age, and other demo-
graphic variables from text and other observed behavior
function likewise, where actual predictions are less of in-
terest than the characteristic features that are learned to
discriminate between classes [10, 4, 2, 12, 22, 23]

Others make use of prediction but are required (through
regulatory or other means) to have transparency in the
explanation—such as diagnosing medical conditions or as-
sessing credit risk. For cases where predictive accuracy

is the primary concern, the information gained from un-
derstanding what a model is learning can be instructive in
suggesting new features to include.

In all of these models, there is often a tension between the
following desiderata:

 Predictive accuracy. On held-out data (not used to
train the model) where some true label is known, how
accurate are predictions? Even in cases where pre-
dictions are not the primary quantity of interest, high
predictive accuracy can still be a good measure of
the generalizability of the model.

Interpretability. To what degree can people under-
stand the mechanism of what’s learned, either at the
scale of an entire model (what features broadly distin-
guish class A from class B?) or item-level decisions
(why was data point x classified A?).

» Representational complexity. Models are often neces-
sary simplifications of the world, and differ in the rich-
ness with which data points are described. What is
the appropriate level of description for a given task?

The relationship between predictive accuracy and represen-
tational complexity has been well explored through the bias-
variance tradeoff (more complex models are inherently less
biased than simpler models, but come at a cost of greater
variability in predictions), but the interaction between these
competing ends and interpretability has been less much
explored. As data science pushes further into outcomes
where humans are involved, we advocate for further work in
this direction, and outline several research questions below.

Interpretability

What does it mean for a predictive model to be interpretable?
First, and most critically, interpretability is not a monolithic
phenomenon, but rather depends on the use case; different
ends entail very different model designs, and it's important
to distinguish between them. For lending institutions sub-
ject to the Equal Credit Opportunities Act (ECOA), this may
simply be an enumeration of input features, providing an
audit trail guaranteeing that information concerning race,
color, religion, national origin, sex, marital status, or age are
not present in predictive models assessing credit risk. For
those designing predictive models, this may be a small set
of global class-level distinctions between those assessed to
have high credit risk and those with low risk; for individuals
denied credit, this may be the specific elements in their own
feature representation that were most responsible for their
local classification decision.

Predictive models in classification differ very strongly in the
degree to which they are conducive to being interpretable
by people; models also exhibit significant variation within
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Figure 1: Decision tree for movie
sentiment prediction.

feature coefficient |
memorable 0.665
hilarious 0.596
terrific 0.579
others 0.547
excellent 0.546
waste -0.724
awful -0.742
nothing -0.749
bad -0.810
worst -0.815

Table 1: Binary logistic regression
coefficients for movie sentiment
prediction.

their class as well. To take the simple of example of the bi-
nary prediction problem of judging whether a movie review
is positive or negative (using data from Pang and Lee [21]),
figure 1 illustrates one of the conventionally most inter-
pretable models—a decision tree, which specifies the series
of feature conjunctions that result in a classification label.
The ability to directly read the sequence of decisions for the
model overall and for any instance-level decision makes this
model “interpretable”; where this human-level interpretabil-
ity begins to break down comes with trees of great depth,
where classification decisions are attributable to dozens or
hundreds of features. Table 1 illustrates the learned model
for another traditionally interpretable classifier—binary lo-
gistic regression, which learns a weight 3; for each feature
x; and assigns the probability of a class as proportional

to exp(—A3 ' z). Positive weights in this model correspond
to features that are highly indicative of the positive class;
negative weights vice versa. With small feature sets, this
feature ranking enables interpretability at both a global level
(the features at the ends are most characteristic of the two
classes learned) and at an instance level (where the fea-
tures present in a given item being classified can also be
ranked). With large feature sets numbering in the tens or
hundreds of thousands (as, for example, in classification in-
volving text), interpretability begins to break down; sparse
models (such as those involving ¢; regularization) can help
make the resulting active feature sets small (and hence
more interpretable), but often come at a cost in accuracy.

At the other end of the interpretability spectrum are more
complex models that contain non-linear interactions be-
tween features. Random forests are aggregations of many
small decision trees, each trained on a subset of the data
and features; they are far superior predictors to a single
decision tree, but come at the cost of interpretability, since
a classification decision is now due to hundreds or thou-

sands of local feature conjunctions (one for each decision
tree in the forest). Neural networks, especially dense mul-
tilayer versions, are often better predictors than simpler
linear models, but are notorious for being difficult to inter-
pret, since the impact of any individual feature is spread
out throughout the network and often interacts with other
features in complex ways.

Aside from the scientific goal of understanding the rela-
tionship between features and their dependent effects, or
from the insight into new features that model inspection
can provide, interpretability is also intimately bound up with
transparency—while transparency (and its inverse, opac-
ity) takes many forms [6], interpretability is important for
problems such as presenting users with rationales for the
predictive decisions that impact them. In user design, giv-
ing users rationales for algorithmic decisions helps with
collaborative filtering [11, 25] and context-aware comput-
ing [16, 15], encouraging trust in the algorithmic process by
exposing its inner workings. Enabling transparency allows
the possibility of giving users control over inferences made
about them (letting them “cloak” highly predictive features if
they know what those features are) [7].

Q1. How can we formalize “interpretability”?
The first research question we can ask is, at its core, the
most important one: how do we formally describe inter-
pretability so that we can measure the degree to which one
model is more “interpretable” than another?

To some degree, model selection criteria that penalize the
complexity of a statistical model (usually in terms of the
number of features, or degrees of freedom, it has)—such
as through the ¢; norm or the Akaike/Bayesian information
criterion—are a step in this direction, but only apply to a
very small subset of available models, and even then only



directly address interpretability as a function of the number
of active features, and not, for example, the interpretability
of the features themselves, their relationship to the outside
world, or the complexity of their interaction within the model.
As Freitas [9] points out, model size can be thought of as a
“syntactic” description of a model, but does not address a
model’s semantics—how features combine to create mean-
ing within it (in a way that can be legible to humans).

Others have made progress in identifying features that are
influential for predictive outcomes— at the level of individual
classification decisions, Martens and Provost [18] define an
instance-level explanation to be the minimal set of features
that change the classification for an item; others weight fea-
tures by their differential impact on the class probability,
either individually [24] or in sets [26]. At the model level,
productive lines of research include both constraining the
space of models to encourage interpretability (such as forc-
ing feature coefficients to be integers [28]) or enriching sim-
pler models while preserving their interpretability (such as
modeling decision lists in a Bayesian setting [13]).

Each of these methods, however, only addresses one slice
of interpretability (feature contribution to decisions) and not
the broader sensemaking process by which humans judge
models to be interpretable as they use them in decision-
making. From a practitioner’s perspective, what models are
“interpretable” enough to give rise to new knowledge?

Q2. How can we add interpretability to complex
models?

A second research question of interest involves balancing
the tradeoffs between interpretable (but simpler) models

and complex (but uninterpretable) models. Can we develop
methods that are simultaneously interpretable, highly pre-
dictive, and representationally complex?

Complex models that involve non-linear transformations of
input data (such as neural networks with non-linear activa-
tion functions and support vector machines with non-linear
kernels) tend to be inherently less interpretable than corre-
sponding linear models. Much work has attempted to make
these more complex models interpretable by approximating
their behavior with simpler models (such as decision trees
or rule sets trained not on original training data but rather
on the predictions of the more complex model) [8, 1, 17, 3].

Alternative lines of research have attempted to leverage
visualization techniques to understand what more complex
models are learning; while this is especially pronounced in
image recognition [27, 20], recent work has exploited this
trend for natural language as well [14].

Both of these approaches necessarily depend on the for-
malization of “interpretability” outlined in Q1—for the former,
in what choice of “interpretable” models are used to approx-
imate the more complex ones; for the latter, the choice of
methods to describe their behavior. Formally operationaliz-
ing “interpretability” has practical impact here as well.

Conclusion

As data science pushes further and further into the human
space, involving people either as the objects of predictive
models or the consumers of analytical methods, under-
standing what predictive models are learning is becoming
increasingly important—for establishing audit trails, for sug-
gesting and prioritizing hypotheses to test, and for facilitat-
ing the general sensemaking process. There is much work
to be done: we need to operationalize “interpretability” in

a way that’s resonant with our own, human, judgments of
the term, and cultivate its use in new models. In doing so,
we can create the foundation on which other desiderata—
accountability, trust, and transparency—can stand.



REFERENCES

1.

Robert Andrews, Joachim Diederich, and Alan B.
Tickle. 1995. Survey and critique of techniques for
extracting rules from trained artificial neural networks.
Knowledge-Based Systems 8, 6 (1995), 373 — 389.
Knowledge-based neural networks.

Shlomo Argamon, Moshe Koppel, James W
Pennebaker, and Jonathan Schler. 2007. Mining the
Blogosphere: Age, gender and the varieties of
self-expression. First Monday 12, 9 (2007).

Bart Baesens, Rudy Setiono, Christophe Mues, and
Jan Vanthienen. 2003. Using Neural Network Rule
Extraction and Decision Tables for Credit-Risk
Evaluation. Management Science 49, 3 (2003),
312-329.

David Bamman, Jacob Eisenstein, and Tyler
Schnoebelen. 2014. Gender Identity and Lexical
Variation in Social Media. Journal of Sociolinguistics
18, 2 (2014).

Leo Breiman. 2001. Statistical Modeling: The Two
Cultures (with comments and a rejoinder by the
author). Statist. Sci. 16, 3 (08 2001), 199-231.

Jenna Burrell. 2016. How the Machine ‘Thinks’:
Understanding the Opacity of Machine Learning
Algorithms. In Big Data and Society.

Daizhuo Chen, Samuel P. Fraiberger, Robert Moakler,
and Foster Provost. 2015. Enhancing Transparency
and Control when Drawing Data-Driven Inferences
about Individuals. In SSRN.

M.W. Craven and J.W. Shavlik. 1996. Extracting
Tree-Structured Representations of Trained Networks.

10.

11.

12.

13.

14.

15.

Advances in Neural Information Processing Systems 8,
8 (1996).

Alex A. Freitas. 2014. Comprehensible Classification
Models: A Position Paper. SIGKDD Explor. Newsl. 15,
1 (March 2014), 1-10.

Jennifer Golbeck, Cristina Robles, and Karen Turner.
2011. Predicting personality with social media. In CHI
'11 Extended Abstracts on Human Factors in
Computing Systems (CHI EA ’11). ACM, New York, NY,
USA, 253-262.

Jonathan L. Herlocker, Joseph A. Konstan, and John
Riedl. 2000. Explaining Collaborative Filtering
Recommendations. In Proceedings of the 2000 ACM
Conference on Computer Supported Cooperative Work
(CSCW '00). ACM, New York, NY, USA, 241-250.

Susan C. Herring and John C. Paolillo. 2006. Gender
and genre variation in weblogs. Journal of
Sociolinguistics 10, 4 (2006), 439-459.

Benjamin Letham, Cynthia Rudin, Tyler H. McCormick,
and David Madigan. 2015. Interpretable classifiers
using rules and Bayesian analysis: Building a better
stroke prediction model. Ann. Appl. Stat. 9, 3 (09
2015), 1350-1371.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2015. Visualizing and Understanding Neural Models in
NLP. In ArXiv.

Brian Y. Lim and Anind K. Dey. 2009. Assessing
Demand for Intelligibility in Context-aware Applications.
In Proceedings of the 11th International Conference on
Ubiquitous Computing (UbiComp '09). ACM, New York,
NY, USA, 195-204.



16.

17.

18.

19.

20.

21.

22.

Brian Y. Lim, Anind K. Dey, and Daniel Avrahami. 2009.
Why and Why Not Explanations Improve the
Intelligibility of Context-aware Intelligent Systems. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '09). ACM, New
York, NY, USA, 2119-2128.

David Martens, Bart Baesens, Tony Van Gestel, and
Jan Vanthienen. 2007. Comprehensible credit scoring
models using rule extraction from support vector
machines. European Journal of Operational Research
183, 3 (2007), 1466 — 1476.

David Martens and Foster Provost. 2014. Explaining
Data-driven Document Classifications. MIS Q. 38, 1
(March 2014), 73—100.

Frederick Mosteller and David L Wallace. 1963.
Inference in an authorship problem: A comparative
study of discrimination methods applied to the
authorship of the disputed Federalist Papers. J. Amer.
Statist. Assoc. 58, 302 (1963), 275-309.

A. Nguyen, J. Yosinski, and J. Clune. 2015. Deep
Neural Networks are Easily Fooled: High Confidence
Predictions for Unrecognizable Images. In Computer
Vision and Pattern Recognition.

Bo Pang and Lillian Lee. 2004. A Sentimental
Education: Sentiment Analysis Using Subjectivity
Summarization Based on Minimum Cuts. In
Proceedings of the ACL.

Marco Pennacchiotti and Ana-Maria Popescu. 2011.
Democrats, Republicans and Starbucks Afficionados:

23.

24.

25.

26.

27.

28.

User Classification in Twitter. In Proceedings of the
17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’11).
ACM, New York, NY, USA, 430—438.

Delip Rao, David Yarowsky, Abhishek Shreevats, and
Manaswi Gupta. 2010. Classifying Latent User
Attributes in Twitter. In Proceedings of the 2nd
International Workshop on Search and Mining
User-generated Contents (SMUC ’10). ACM, New York,
NY, USA, 37-44.

Marko Robnik-Sikonja and Igor Kononenko. 2008.
Explaining Classifications For Individual Instances.
IEEE Trans. on Knowl. and Data Eng. 20, 5 (May
2008), 589-600.

Rashmi Sinha and Kirsten Swearingen. 2002. The Role
of Transparency in Recommender Systems. In CHI ‘02
Extended Abstracts on Human Factors in Computing
Systems (CHI EA '02). ACM, New York, NY, USA,
830-831.

Erik Strumbelj and Igor Kononenko. 2010. An Efficient
Explanation of Individual Classifications Using Game
Theory. J. Mach. Learn. Res. 11 (March 2010), 1-18.

Christian Szegedy, Wojciech Zaremba, llya Sutskever,
Dumitru Erhan Joan Bruna, lan Goodfellow, and Rob
Fergus. 2014. Intriguing properties of neural networks.
In ICLR.

Berk Ustun and Cynthia Rudin. 2014. Methods and
Models for Interpretable Linear Classification. In ArXiv.



	Introduction
	Interpretability
	Q1. How can we formalize ``interpretability''?
	Q2. How can we add interpretability to complex models?
	Conclusion
	REFERENCES 

