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Abstract. A series of studies have shown the feasibility of authenticat-
ing users based on their electroencephalography (EEG) signals. While
these studies report accuracy rates up to 100%, they were run in labora-
tory settings, with the subjects kept in stationary, resting conditions. We
perform an experimental study to quantify the effect of physical exercise
on EEG authentication accuracy. Subjects first completed a visual count-
ing task while in a resting state. Then, they repeated the same task after
performing one minute of vigorous physical exercise. We quantify the sim-
ilarity of a subject’s brainwave signals before and after exercise, s;;, and
compare it against s;;, the similarity of the subject’s signal after exercise
with other subjects’ signals before exercise. This allows us to verify if a
subject’s post-exercise brainwave signal remains similar to their signal
before exercise, or if the signal has changed to be no longer distinguish-
able from those of the other subjects. We use s;; and s;; as the basis for
a simple authentication protocol. A user is authenticated if the s;; from
their submitted sample is greater than the s;; for a randomly selected
user. Our analysis reveals that signal similarity and authentication accu-
racy both degrade significantly immediately after exercise, but recover
to their original levels after about 45-60 seconds. These results suggest
that short-term changes in physiological states can impact the perfor-
mance of brainwave authentication. They also point to future research
that quantifies authentication accuracy under other psycho-physiological
conditions such as fatigue, hunger, or stress.

1 Introduction

Using our brainwaves as a biometric has been the lore of science fiction for
decades. In 2002, Poulos et al. demonstrated the possibility of identifying persons
by classifying their electroencephalography (EEG) signals [1]. In 2005, Thorpe et
al. proposed the concept of an authentication system based on “passthoughts”,
where instead of typing in a password, users can provide an EEG sample as
their authenticator [2]. Since then, there has been a series of experimental stud-
ies confirming the feasibility of user authentication using EEG. Marcel and Del
Millan [3] and Palaniappan [4] achieved authentication accuracy as high as 100%
using clinical-grade EEG technology. Ashby et al. also achieved 100% accu-
racy using consumer-grade multi-channel EEG [5]. Most recently, Chuang et



al. achieved a 99% authentication accuracy using consumer-grade single-channel
EEG [6]. Unlike previous studies, in which the subjects performed identical men-
tal tasks, they allowed participants to perform several mental tasks involving se-
cret thoughts known only to the participants. This meant that, like passwords,
these “passthoughts” can be easily changed by the users, in contrast to traditional
biometrics such as fingerprints and iris patterns which are not easily changeable.
At the same time, brainwave authentication also affords some security advan-
tages over passwords, such as robustness against shoulder-surfing, keylogging,
and smudge attacks.

In parallel, significant progress has been made in developing Mobile EEG
devices that are wireless and portable [7-9], allowing researchers to run experi-
mental studies outside of traditional lab settings for ecological validity reasons
[10-12]. Several companies have developed low-cost EEG headsets (e.g., [13, 14])
to target the consumer market, which are currently focused on neurogaming and
neurofeedback applications. Researchers are also investigating novel EEG sens-
ing platforms, such as EarEEG that captures signals from within the ear canal,
which may offer significant aesthetic and usability benefits over traditional head-
worn devices [15, 16].

If brainwave authentication is to become a real-world application of mobile
EEG technology, we must investigate its robustness in realistic settings. In all
of the previous EEG authentication studies, participants were always in a sit-
ting and resting state, which may not accurately simulate conditions in the real
world. If the user has just engaged in some form of activity that altered their
physiological state, e.g., physical activity like jogging, or running late to a meet-
ing, we do not know whether there may be significant impact on the accuracy
of EEG authentication.

Behavioral neuroscientists have investigated the effect of exercise on brain-
wave activity, finding increases in post-exercise a-wave activity that is likely
correlated with a state of relaxation [17,18]. On the other hand, physical ac-
tivities that lead to stress or increase in attention are linked to cortical arousal
with an increase in S-wave activity and a decrease in a-wave activity [19, 20].
It remains an open question how these short-term cortical changes may impact
the performance of EEG authentication.

This work represents the first step towards understanding how brainwave
authentication may be affected by short-term changes in physiological state.
Specifically, we perform an experimental study to quantify the performance of a
simple authentication scheme after 60 seconds of physical exercise. While we find
that the authentication error does suffer a significant increase immediately after
exercise, we also observe that the error rate recovers within 60 seconds in the
post-exercise period. These findings have important implications to the design
and development of brainwave authentication technologies.



2 Methods

Ten healthy subjects (six female, four male; mean age = 30.7, stdev = 15.8)
completed our study protocol, which was approved by the local IRB. Study pro-
cedures began with an informed consent process, setup of the EEG device (Neu-
rosky Mindwave Mobile) and data recording software (Neurosky NeuroView),
and verification of the EEG signal quality.

The experiment involves four timed steps: 90 seconds of a mental task, 60
seconds of physical exercise, 15 seconds of transition, and 90 seconds of the same
mental task. The mental task is a visual color-counting task adapted from [6].
While in a sitting and stationary position, the subject is shown on a computer
screen a series of thirty visual images (slides), each displayed for 3 seconds in
duration. Each slide consists of thirty equal-sized rectangles of various colors: red,
blue, green, yellow, or black, arranged in a 5x6 matrix (Fig. 1). The subject’s
task is to silently count the number of red rectangles on each slide, restarting
from one with each new slide. The number of red rectangles on each slide varies

from zero to twelve.

Fig. 1: Sample task slide with 30 rectangles of assorted colors in a 5x6 matrix. The men-
tal task consists of 30 task slides displayed for 3 seconds each. Subjects are instructed
to silently count the number of red rectangles on each slide.

After the first mental task, the subject performs 60 seconds of jumping jacks,
and during the 15 second transition period, they return to the original sitting
position, to repeat the same visual counting task for 90 seconds.



3 Data and Analysis

The experimental protocol produces 90 x 2 or 180 seconds of EEG data for each
subject. The Mindwave Mobile headset outputs a single-channel EEG signal at a
sampling rate of 512 Hz. The NeuroView recording software generates one power
spectrum sample every 0.5 seconds. The power spectrum has a range of 0 — 256
Hz at a resolution of 0.25 Hz.

First, we compute a power spectrum P’ for the 90-second pre-exercise
task for subject ¢ by taking the mean (of each frequency component) of their
180 power spectrum samples. We compute the power spectrum PP for the
90-second post-exercise task in the same manner.

3.1 Similarity Analysis
We use cosine similarity as the distance measure for comparing the similarity of
two power spectra:

u-v

(1)

similarity(u,v) = cos(f) = [[ull[Jo]]
wll|v

where v and v are vectors representing the power spectra under comparison.
We can quantify the self-similarity for each subject, s;;, as the cosine simi-
larity of their pre-exercise and post-exercise power spectra:

si = similarity(PP°*", PP™®) (2)
The self-similarity measure for each subject, as well as the mean across ten

subjects, are shown in Table I. The mean of 0.658 is consistent with the 0.6664
value reported for the color task in [6].

Subject  Self-Similarity

Subject 1 0.702
Subject 2 0.662
Subject 3 0.670
Subject 4 0.646
Subject 5 0.575
Subject 6 0.648
Subject 7 0.713
Subject 8 0.660
Subject 9 0.683
Subject 10 0.625
Mean 0.658

Table 1: Self-Similarity (s:;) by Subject.

We can also quantify the cross-similarity between a pair of subjects, s;;, as
the cosine similarity of subject i’s post-exercise spectrum and subject j’s pre-
exercise spectrum:



si; = similarity(PP, Pr™) (3)

Figure 2 shows the relationship between s; and s;;, and the power spectra
used to compute them.
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Fig. 2: Computing self-similarity s;; and cross-similarity s;; using power spectra from
pre-exercise and post-exercise tasks.

3.2 Authentication Analysis

Authentication performance is typically quantified using two standard metrics:
False Acceptance Rate (FAR) and False Rejection Rate (FRR). In this study, we
are interested in the scenario where a legitimate user is attempting to authenti-
cate with their EEG signals after exercise. In this case, the ideal authentication
protocol should never reject the user, achieving an FRR of zero. Therefore, we
focus on the FRR metric in our analysis.

To quantify the performance of post-exercise authentication, we use a simple
authentication protocol where we compare, for each subject, their s;; against



the s;; value for a randomly selected subject j. The protocol accepts subject i
if s;; > s;5, and rejects the subject otherwise. Given that we are authenticating
subject ¢ in this case, an “accept” decision will be considered a true accept,
whereas a “reject” decision will be considered a false reject. With a sample size
of 10 subjects, we repeat this authentication protocol 9 times, once for each
subject j # i, to obtain the FRR for each subject (Table IT). We find a significant
variation in the FRR across the subjects. Nonetheless, the mean FRR of 0.278
is comparable to the Half Total Error Rate of 0.280 reported in [6].

Subject  False Rejection Rate

Subject 1 0.556
Subject 2 0.000
Subject 3 0.000
Subject 4 0.556
Subject 5 0.667
Subject 6 0.111
Subject 7 0.111
Subject 8 0.111
Subject 9 0.333
Subject 10 0.333
Mean 0.278

Table 2: False Rejection Rate by Subject

3.3 Recovery over Time

More importantly, we are interested in how the cosine similarity and FRR mea-
sures change over time, as the subjects recover from their physical exercise.

To do this, we employ the power spectra PP and PP**" for each of the thirty
individual 3-second slides, rather than for the entire 90-second tasks. We do so
by taking the mean (of each frequency component) of the 6 power spectrum
samples that correspond to each slide. Now, we can quantify s;; using the same
equation (2) for each of the thirty slides, and plot it as a function of time (Figure
3). We see that s;;, averaged across the 10 subjects, is indeed degraded during
the first two to four slides, but recovers to the mean level of 0.658 (from Table
I) soon thereafter, and stabilizes after about 15 slides, which corresponds to 60
seconds after the end of exercise (15 seconds of transition time plus 45 seconds
of slides).

Similarly, we can quantify the False Reject Rate as a function of time by
applying the same authentication protocol to s; and s;; computed on a per-
slide basis. We can see in Figure 4 that FRR, averaged across the 10 subjects,
rises to as high as 0.6 at the start of the post-exercise mental task, which is
15 seconds after the end of exercise. It experiences a gradual recovery over the
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Fig. 3: The recovery of self-similarity (s;;) over time: self-similarity recovers and stabi-
lizes after about 15 slides, which corresponds to 60 seconds after the end of exercise.
(Error bars show standard error of mean, with n =10. Red line shows the mean self-
similarity of 0.658 for the entire 90-second task, from Table I.)

next ten slides (30 seconds), returning to the baseline level after about 10 slides,
corresponding to 45 seconds after the end of exercise.

4 Discussion

The pattern of recovery in EEG signals, as quantified by the self-similarity and
FRR measures, is consistent with the patterns of heart rate recovery [21] and
respiratory rate recovery after exercise [22]. For example, Adib et al. found that
heart rates take between 30 to 60 seconds to recover after participants performed
2 minutes of rope jumping exercise [23]. This suggests that computing applica-
tions that rely on the real-time interpretation of bio-signals must account for
short-term changes in a user’s physiological state due to a variety of different
factors, and allow for a recovery period that may vary for different bio-signals
and across different individuals.

There are many possible next steps to take with this line of research. First, we
only administered one type of mental task in our study, given the constraint of
the physical exercise component of our protocol. This is in contrast to previous
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Fig. 4: False rejection rate over time: FRR is elevated immediately after exercise, and
recovers to baseline levels after about 10 slides, which corresponds to 45 seconds after
the end of exercise. (Error bars show standard error of mean, with n =10. Orange line
shows the mean FRR of 0.278 for the entire 90-second task, from Table II.)

EEG authentication studies that leveraged multiple mental tasks per subject
to achieve high levels of accuracy. Future work can investigate if other types
of mental tasks (e.g., motor imagery, visual imagery), or collections of tasks,
produce similar patterns of post-exercise recovery.

The large physical movements during the exercise phase of our experiment
necessitated a transition period before EEG data collection could resume. Thus
we have a black-out period of 15 seconds immediately following the exercise. It
would be worthwhile to investigate solutions that may allow meaningful EEG
data to be collected during the transition period, and potentially during the
exercise period itself, notwithstanding the electromyography (EMG) signals that
will inevitably be present.

This study focused on the effects of physical exertion on EEG authentication.
Further research can look at a variety of other pyscho-physiological effects, such
as mental fatigue, stress, distraction, changes in affect or mood, or the effects of
alcohol, caffeine, sugar, or medication. Together, they can paint a much broader,
more detailed picture of the robustness of EEG authentication in the real world.
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Conclusion

We conducted the first-ever study of the effects of physical exercise on EEG au-
thentication. We find that authentication accuracy is significantly degraded im-
mediately after exercise, but recovers within 45-60 seconds after exercise. These
results suggest that short-term changes to a user’s physiological state can have
a significant impact on the accuracy of EEG authentication systems. As mobile
EEG technologies become integrated with head-worn computing devices such as
augmented reality or virtual reality systems or in-ear audio assistants, the via-
bility of “passthoughts on the go” will hinge upon its robustness under a variety
of real world use cases.
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